نتایج جستجو برای: شبکه عصبی و تبدیل موجک
تعداد نتایج: 762182 فیلتر نتایج به سال:
افت حاد فشار خون (ahe) بیماری خطرناکی به شمار می رود و باعث مرگ و میر در بیمارستان می شود. این بیماری، شاخص شایع بسیاری از اختلالات دیگر است و گاهی منجر به حوادث جبران ناپذیری می شود. تحقیقات نشان داده است که تشخیص زود هنگام آن، منجر به مداخله سریع و به موقع پرستاران شده واحتمال زنده ماندن بیمار را نیز افزایش می دهد. بدین منظور این پژوهش به بررسی ایجاد مدلی بر اساس شبکه های عصبی مصنوعی جهت پیش ...
در دو دهه اخیر استفاده از مدل های غیرخطی در تخمین دبی رودخانه ها مورد توجه محققان واقع شده است که از آن جمله میتوان به مدل شبکه های عصبی مصنوعی، برنامهریزی ژنتیک، سری های زمانی، تبدیل موجک و ... اشاره نمود. تبدیل موجک از طریق تجزیه امواج به زمان و مقیاس همچون روش آنالیز فوریه شیوه نوینی را برای پردازش موج ارائه می دهد. در تبدیل موجک از موجک گسسته میر برای برآورد جریان متوسط ماهانه رودخانه لیق...
شاخص بازار سرمایه به عنوان دماسنج اقتصادی هر کشور می باشد. از این رو پیش بینی این متغییر جهت اخذ دید کلی از وضعیت اقتصادی و اخذ استراتژی های سرمایه گذاری، یکی از مسائل مهم به شمار می رود. از جمله روش های پیش بینی پرکاربرد در سری های زمانی مالی، شبکه عصبی می باشد که با توجه به جامعیت این روش و عدم وجود برخی از پیش فرض ها در خصوص داده ها، گسترش زیادی نسبت به روش های آماری یافته است. اما وجود نویز...
خشکسالی یک رویداد طبیعی است که میتواند خسارات قابل توجهی را به زندگی بشر وارد سازد. پیشبینی خشکسالی نقش موثری را در مدیریت منابع آب ایفا میکند. در این تحقیق بهمنظور پیشبینی خشکسالی سه مدل ترکیبی از انواع شبکههای عصبی و تبدیل موجک ارائه شده است و سپس با استفاده از این مدلها، شاخص بارش استاندارد (SPI) برای 12 ماه آینده در ایستگاه سینوپتیک یزد پیشبینی گردیده است. شبکههای عصبی مصنوعی توانا...
پیشبینی بازارهای مالی یکی از سرفصلهای مهم در حوزه مالی و مطالعات پژوهشی است. اهمیت پیشبینی از یک سو و پیچیدگی آن از سوی دیگر باعث شده است که تحقیقات زیادی در این زمینه انجام شود. در این پژوهش از یک روش ترکیبی شامل تبدیل موجک، مدل ARMA-EGARCH و شبکه عصبی مصنوعی برای پیشبینی یک دورهای قیمت سهام در بازارهای ایران و آمریکا استفاده شده است. ابتدا به کمک تبدیل موجک سری زمانی را به چند سری جزئی و...
در این مقاله روشی هوشمند با استفاده از شبکه عصبی و تبدیل موجک برای تشخیص جزیره ای شدن برای واحدهای تولید پراکنده مبتنی بر اینورتر ارائه شده است. روش ارائه شده مبتنی بر تغییر مرجع توان راکتیو در واسط کنترل اینورتر به منظور ایجاد یک گذرای اجباری کوچک در فرکانس و مشتق آن است. در شرایطی که واحد تولید پراکنده در جزیره قرار گرفته باشد، تغییر در مرجع توان راکتیو باعث تغییر در فرکانس سیستم و مشتق آن و ...
در پژوهش حاضر، حافظه بلندمدت و رفتار دینامیکی سیگنال سری زمانی جریان روزانه رودخانه خرمآباد که حوزه آبخیز آن کوهستانی و دارای کاربری شهری است، با استفاده از نمایه هرست بررسی شده است. مقدار نمایه هرست سیگنال رواناب رودخانه خرمآباد در بازه زمانی سالهای 1370 تا 1393 برابر با 0.8 بهدست آمد. این مقدار نشان از حافظه بلندمدت و دینامیک غیر خطی سیگنال رواناب این رودخانه دارد. در ادامه، با بهکارگیر...
در دو دهه اخیر استفاده از مدل های غیرخطی در تخمین دبی رودخانه ها مورد توجه محققان واقع شده است که از آن جمله میتوان به مدل شبکه های عصبی مصنوعی، برنامهریزی ژنتیک، سری های زمانی، تبدیل موجک و ... اشاره نمود. تبدیل موجک از طریق تجزیه امواج به زمان و مقیاس همچون روش آنالیز فوریه شیوه نوینی را برای پردازش موج ارائه می دهد. در تبدیل موجک از موجک گسسته میر برای برآورد جریان متوسط ماهانه رودخانه لیق...
چکیده آبهای زیرزمینی همواره به عنوان یکی از منابع مهم و عمده ی تأمین آب شرب و کشاورزی به ویژه در مناطق خشک و نیمه خشک مطرح بودهاند. به منظور آگاهی از وضعیت این منابع و مدیریت بهینه ی آنها، لازم است پیشبینی دقیقی از نوسانات سطح آب زیرزمینی صورت گیرد. در این تحقیق اطلاعات 15 پیزومتر موجود در دشت اردبیل مورد استفاده قرارگرفت. از تبدیل موجک و روش خوشهبندی به ترتیب برای پیشپردازش زمانی و مک...
پیش بینی کمیت تولید، نقشی اساسی در بهینه سازی و برنامه ریزی سیستم مدیریت مواد زاید جامد شهری دارد. اما به دلیل طبیعت ناهمگون و تأثیر عوامل متنوع و خارج از کنترل بر تولید، همواره با مشکلات زیادی همراه بوده است. شبکة عصبی مصنوعی اخیراً در بسیاری از کاربردهای مهندسی نظیر مهندسی محیط زیست به عنوان ابزاری قدرتمند در مدلسازی مورد توجه قرار گرفته است. در این تحقیق با توجه به دینامیک و پیچیده بودن سیستم...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید