نتایج جستجو برای: edge sum chromatic sum
تعداد نتایج: 196640 فیلتر نتایج به سال:
for a graph $g$ with edge set $e(g)$, the multiplicative sum zagreb index of $g$ is defined as$pi^*(g)=pi_{uvin e(g)}[d_g(u)+d_g(v)]$, where $d_g(v)$ is the degree of vertex $v$ in $g$.in this paper, we first introduce some graph transformations that decreasethis index. in application, we identify the fourteen class of trees, with the first through fourteenth smallest multiplicative sum zagreb ...
For a graph $G$ with edge set $E(G)$, the multiplicative sum Zagreb index of $G$ is defined as$Pi^*(G)=Pi_{uvin E(G)}[d_G(u)+d_G(v)]$, where $d_G(v)$ is the degree of vertex $v$ in $G$.In this paper, we first introduce some graph transformations that decreasethis index. In application, we identify the fourteen class of trees, with the first through fourteenth smallest multiplicative sum Zagreb ...
The chromatic sum Σ(G) of a graph G is the smallest sum of colors among all proper colorings with natural numbers. The strength s(G) of G is the minimum number of colors needed to achieve the chromatic sum. We construct for each positive integer k a tree Tk with strength k that has maximum degree only 2k − 2. The result is best possible.
فرض کنید $ x $ و $ y $ فضاهای باناخ و $ t $ یک عملگر خطی پیوسته از $ x $ به $ y $ باشد. اگر $ y $ دارای توپولوژی راست باشد که توسط نرم آن القا شده می خواهیم نشان دهیم که یک توپولوژی موضعا محدب برای $ x $ موجود است که عملگر $ t $، نسبت به آن ضعیف فشرده است. در نهایت تحت شرایط جدید می خواهیم بدانیم که اگر $ sum x_{n} $ یک سری همگرای ضعیف در $ x $ باشد آیا...
The chromatic quasisymmetric function of a graph was introduced by Shareshian and Wachs as a refinement of Stanley’s chromatic symmetric function. An explicit combinatorial formula, conjectured by Shareshian and Wachs, expressing the chromatic quasisymmetric function of the incomparability graph of a natural unit interval order in terms of power sum symmetric functions, is proven. The proof use...
the vertex-edge wiener index of a simple connected graph g is defined as the sum of distances between vertices and edges of g. two possible distances d_1(u,e|g) and d_2(u,e|g) between a vertex u and an edge e of g were considered in the literature and according to them, the corresponding vertex-edge wiener indices w_{ve_1}(g) and w_{ve_2}(g) were introduced. in this paper, we present exact form...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید