نتایج جستجو برای: خانواده garch
تعداد نتایج: 29861 فیلتر نتایج به سال:
It is well-known that causal forecasting methods that include appropriately chosen Exogenous Variables (EVs) very often present improved forecasting performances over univariate methods. However, in practice, EVs are usually difficult to obtain and in many cases are not available at all. In this paper, a new causal forecasting approach, called Wavelet Auto-Regressive Integrated Moving Average w...
محققان زیادی از مدل های مختلف برای پیشبینی تلاطم در بازار کالا و سرمایه استفاده کردهاند. هر چند تعداد اندکی از این تحقیقات به نقش فرکانس دادهها در پیشبینی های خود توجه کردهاند. همچنین هیچکدام از این تحقیقات امکان وجود حافظه بلند مدت در پیش بینی تلاطم قیمت نفت را در نظر نگرفتهاند. ما به منظور پرکردن این شکاف در پژوهش ها دستهای از الگوهای خانواده GARCH و ARFIMA (الگوهایی با حافظه بلند مدت ...
This paper establishes the strong consistency and asymptotic normality of the quasi-maximum likelihood estimator (QMLE) for a GARCH process with periodically time-varying parameters. We first give a necessary and sufficient condition for the existence of a strictly periodically stationary solution for the periodic GARCH (P -GARCH) equation. As a result, it is shown that the moment of some posit...
We show that, for three common SARV models, fitting a minimum mean square linear filter is equivalent to fitting a GARCH model. This suggests that GARCH models may be useful for filtering, forecasting, and parameter estimation in stochastic volatility settings. To investigate, we use simulations to evaluate how the three SARV models and their associated GARCH filters perform under controlled co...
We consider the parameter restrictions that need to be imposed in order to ensure that the conditional variance process of a GARCH(p, q) model remains non-negative. Previously, Nelson and Cao (1992) provided a set of necessary and sufficient conditions for the aforementioned non-negativity property for GARCH(p, q) models with p ≤ 2, and derived a sufficient condition for the general case of GAR...
مدل سازی نوسانات بازده از منظر اقتصاددانان و نیز کارپردازان علوم مالی به لحاظ موارد استفاده ی آن در پیش بینی بازده سهام، از اهمیت بالایی برخوردار است. مدل های خانواده ی garch در کاربرد بسیار مفید هستند زیرا برازش آن ها می تواند برای پیش بینی های تجربی آینده مانند پیش بینی نوسانات خوشه ای به کار روند. همچنین پیش بینی ها در مدیریت ریسک مالی بسیار مهم اند. اگر برای ساختن بازه های اطمینان پارامتره...
In the presence of generalized conditional heteroscedasticity (GARCH) in the residuals of a vector error correction model (VECM), maximum likelihood (ML) estimation of the cointegration parameters has been shown to be efficient. On the other hand, full ML estimation of VECMs with GARCH residuals is computationally difficult and may not be feasible for larger models. Moreover, ML estimation of V...
GARCH is one of the most prominent nonlinear time series models, both widely applied and thoroughly studied. Recently, it has been shown that the COGARCH model, which has been introduced a few years ago by Klüppelberg, Lindner and Maller, and Nelson’s diffusion limit are the only functional continuous-time limits of GARCH in distribution. In contrast to Nelson’s diffusion limit, COGARCH reprodu...
In this paper we consider a general ...rst-order power ARCH process and, in particular, a special case in which the power parameter approaches zero. These considerations give us the autocorrelation function of the logarithms of the squared observations for ...rstorder exponential and logarithmic GARCH processes. These autocorrelations decay exponentially with the lag and may be used for checkin...
Volatility modelling of asset returns is an important aspect for many financial applications, e.g., option pricing and risk management. GARCH models are usually used to model the volatility processes of financial time series. However, multivariate GARCH modelling of volatilities is still a challenge due to the complexity of parameters estimation. To solve this problem, we suggest using Independ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید