نتایج جستجو برای: خمینه لورنتزی
تعداد نتایج: 311 فیلتر نتایج به سال:
میدان های برداری که شار آنها در هر نقطه طولپایی باشد دارای اهمیت بسیاری است و کاربرد های فراوانی در ریاضیات و فیزیک دارد. چنین میدان های برداری به افتخار ریاضیدان آلمانی، ویلهلم کیلینگ (wilhelm karl joseph killing (1847-1923) )، میدان برداری کیلینگ نامند. میدان های برداری کیلینگ (به ویژه با طول ثابت) در مرجع های زیادی مطالعه شده است، همچنین هندسه خمینه های ریمانی که میدان برداری کیلینگ می پذی...
در این پایان نامه ابتدا معرفی بیش خمینه های هموار از دیدگاه هندسه جبری مورد مطالعه قرار می گیرد و پس از آن بحث درباره بیش گروه های لی و جبر لی وابسته به آن ها از نظر خواهد گذشت. سپس بیش خمینه های ریمانی مورد بررسی قرار گرفته و به گسترش مفاهیمی همچون هموستارها، مشتق هموردا، میدان های برداری موازی، انتقال موازی، ژئودزیک ها و میدان های برداری کیلینگ بر این فضاها پرداخته خواهد شد.
در این پایان نامه خمینه های شبه متری تماسی و خمینه های $cr$ معرفی شده و رابطه بین این دو بررسی می شود. همچنین برخی قضایا که درمورد یک خمینه شبه متری تماسی برقرار است برای یک خمینه تقریبا $cr$ ناتبهگون نیز اثبات می شود.
موضوع این رساله که زیرهمسازی و چند زیرهمسازی توابع محدب ژئودزیک روی خمینه های ریمانی و کیلری می باشد. شرح مقاله ای از گرین و وو در همین موضوع است که هدف نهایی آن اثبات دو قضیه راجع به زیرهمسازی توابع محدب ژئودزیک روی خمینه های ریمانی و چند زیرهمسازی توابع محدب ژئودزیک روی خمینه های کیلری است . شرح بیشتر این مطالب در متن رساله خواهد آمد.
فرض کنیم m یک خمینه ی ریمانی فشرده و i(m) گروه یکمتریهای روی m باشند. برای یرگروه بسته ی g از i(m) و p m مجموعه ی مدار pتحت g نامیده شده، گردایه ی تمام چنین مدارهایی با m/g نمایش داده می شود. نگاشت طبیعی هر نقطه را به مدار آن تحت g می برد. طبق شرایطی که روی g اعمال می شود، m/g یک خمینه و یک نگاشت پوششی خواهد بود. مزیت کار با m/g و و ... آنست که خواص هندسی m برح...
( این پایان نامه به علت نگارش با نرم افزار فارسی تک فایل word ندارد و فایلهای تک در قسمت سایر فایلها قرار داده شده است ) در این پایان نامه، پس از معرفی خمینه های حدودا" کهلری ثابت می شود چنین خمینه هایی یک التصاق هرمیتی با تاب تماما" پادمتقارن می پذیرند. پس از آن، خمینه های حدودا" کهلری اکید تخت با متریک (الزاما") نامعین رده بندی می شوند. در ادامه، خمینه های ریمانی فشرده ی (m,g) که استوانه ی ...
فرض کنید m یک منیفلد هموار همبند باشد و α یک متریک ریمانی روی m باشد، در این صورت یک متریکراندرس روی m عبارت است از یک متریک فینسلر به فرم f =β + α که در آن β یک 1-فرمی هموار با طول کمتر از یک می باشد. در این پایان نامه ابتدا هندسه فینسلری متریک های راندرس چپ پایا و دو پایا روی گروه های لی مورد بررسی قرار می گیرند سپس ژئودزیک های متریک های فینسلری چپ پایا و دو پایا روی گروه های لی محاسه می...
قضیه استوکس روی خمینه ها بیان می کند که انتگرال یک k-فرم دیفرانسیل روی مرز خمینه فشرده جهتدار و دیفرانسیل پذیر m برابر با انتگرال مشتق خارجی آن k-فرم روی خمینه است. از نکات مورد توجه دراین قضیه این است که خمینه m باید جهتدار بوده و فرم دیفرانسیل مربوطه دارای تکیه گاه فشرده باشد. هم چنین مرز خمینه دارای جهت مرزی القا شده از m است. جهت خمینه m توسط یک فرم دیفرانسیل ناصفر تعیین می گردد. هم چنین ...
اگر (?:m?r^(n+p یک نشاننده از خمینه ی فشرده و n بعدی m به فضای اقلیدسی (n+p ) بعدی باشد ، m را می توان زیر خمینه ی r^(n+p) محسوب کرد. در بین این زیر خمینه ها ، تعدادی روی ابر کره ی (n+p-1) بعدی واقع می شوند که به طور طبیعی نتایج موجود برای زیر خمینه های کروی برای آن ها صادق است. بنابراین یک مسئله جالب توجه در هندسه ، به دست آوردن شرایطی است که تحت آن این کلاس یعنی زیرخمینه های کروی مشخص شوند. د...
در این پایان نامه نتیجه های جدید کلابی - برنشتاین برای رویه های بیشین فروبرده شده در یک فضای حاصلضرب لورنتزی به شکل m^2×r_1 ارائه می شود که m^2 یک رویه ریمانی همبند است و بر m^2×r_1 متریک لورنتزی ? ,?=? ,?_m-dt^2 قرار دارد، به ویژه ثابت می شود اگر m یک رویه ریمانی با خمیدگی گاوسی نامنفی k باشد هر رویه بیشین تمام در m^2×r_1 باید تماما ژئودزیک باشد همچنین اگر m تخت نباشد نتیجه ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید