نتایج جستجو برای: high dimensional clustering

تعداد نتایج: 2463052  

Journal: :JSW 2014
Tiantian Yang Jun Wang

Soft subspace clustering are effective clustering techniques for high dimensional datasets. Although several soft subspace clustering algorithms have been developed in recently years, its robustness should be further improved. In this work, a novel soft subspace clustering algorithm RSSKM are proposed. It is based on the incorporation of the alternative distance metric into the framework of kme...

2007
Elke Achtert

It is well-known that traditional clustering methods considering all dimensions of the feature space usually fail in terms of efficiency and effectivity when applied to high-dimensional data. This poor behavior is based on the fact that clusters may not be found in the high-dimensional feature space, although clusters exist in subspaces of the feature space. To overcome these limitations of tra...

2009
Dino Ienco Ruggero G. Pensa Rosa Meo

Clustering high-dimensional data is challenging. Classic metrics fail in identifying real similarities between objects. Moreover, the huge number of features makes the cluster interpretation hard. To tackle these problems, several co-clustering approaches have been proposed which try to compute a partition of objects and a partition of features simultaneously. Unfortunately, these approaches id...

2007
Gianni Costa Francesco Folino Giuseppe Manco Riccardo Ortale

We propose a hierarchical, model-based co-clustering framework for handling high-dimensional datasets. The technique views the dataset as a joint probability distribution over row and column variables. Our approach starts by initially clustering rows in a dataset, where each cluster is characterized by a different probability distribution. Subsequently, the conditional distribution of attribute...

Journal: :SIAM J. Imaging Sciences 2017
Manolis C. Tsakiris René Vidal

Subspace clustering is the problem of clustering data that lie close to a union of linear subspaces. Existing algebraic subspace clustering methods are based on fitting the data with an algebraic variety and decomposing this variety into its constituent subspaces. Such methods are well suited to the case of a known number of subspaces of known and equal dimensions, where a single polynomial van...

2014
Dohyung Park Constantine Caramanis Sujay Sanghavi

We consider the problem of subspace clustering: given points that lie on or near the union of many low-dimensional linear subspaces, recover the subspaces. To this end, one first identifies sets of points close to the same subspace and uses the sets to estimate the subspaces. As the geometric structure of the clusters (linear subspaces) forbids proper performance of general distance based appro...

Journal: :Computational Statistics & Data Analysis 2007
Charles Bouveyron Stéphane Girard Cordelia Schmid

Clustering in high-dimensional spaces is a difficult problem which is recurrent in many domains, for example in image analysis. The difficulty is due to the fact that highdimensional data usually live in different low-dimensional subspaces hidden in the original space. This paper presents a family of Gaussian mixture models designed for highdimensional data which combine the ideas of subspace c...

Journal: :Proceedings of the AAAI Conference on Artificial Intelligence 2019

Journal: :International Journal of Advanced Computer Research 2016

Steel consumption is a critical factor affecting pricing decisions and a key element to achieve sustainable industrial development. Forecasting future trends of steel consumption based on analysis of nonlinear patterns using artificial intelligence (AI) techniques is the main purpose of this paper. Because there are several features affecting target variable which make the analysis of relations...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید