نتایج جستجو برای: l double fuzzy rough sets
تعداد نتایج: 1143682 فیلتر نتایج به سال:
Clustering is a standard approach in analysis of data and construction of separated similar groups. The most widely used robust soft clustering methods are fuzzy, rough and rough fuzzy clustering. The prominent feature of soft clustering leads to combine the rough and fuzzy sets. The Rough Fuzzy C-Means (RFCM) includes the lower and boundary estimation of rough sets, and fuzzy membership of fuz...
In this paper, we investigate the properties of join and meet preserving maps in complete residuated lattice using Zhang’s the fuzzy complete lattice which is defined by join and meet on fuzzy posets. We define L-upper (resp. L-lower) approximation operators as a generalization of fuzzy rough sets in complete residuated lattices. Moreover, we investigate the relations between L-upper (resp. L-l...
Since upper and lower approximations could be induced from the rough set structures, rough sets are considered as approximations. The concept of fuzzy rough sets was proposed by replacing crisp binary relations with fuzzy relations by Dubois and Prade. In this paper, we introduce and investigate some properties of intuitionistic fuzzy rough approximation operators and intuitionistic fuzzy relat...
Rough set theory is an important approach to granular computing. Type-1 fuzzy set theory permits the gradual assessment of the memberships of elements in a set. Hybridization of these assessments results in a fuzzy rough set theory. Type-2 fuzzy sets possess many advantages over type-1 fuzzy sets because their membership functions are themselves fuzzy, which makes it possible to model and minim...
High dimensional microarray datasets are difficult to classify since they have many features with small number ofinstances and imbalanced distribution of classes. This paper proposes a filter-based feature selection method to improvethe classification performance of microarray datasets by selecting the significant features. Combining the concepts ofrough sets, weighted rough set, fuzzy rough se...
A fuzzy rough set approach has been proposed without using any fuzzy logical connectives. By this approach, gradual decision rules are induced from a given decision table. Fuzzy-rough modus ponens and fuzzy-rough modus tollens have been formulated based on the gradual decision rules. The equivalence condition between fuzzy-rough modus ponens and fuzzy-rough modus tollens is discussed. The condi...
Fuzzy sets and rough sets are known as uncertainty models. They are proposed to treat different aspects of uncertainty. Therefore, it is natural to combine them to build more powerful mathematical tools for treating problems under uncertainty. In this chapter, we describe the state of the art in the combinations of fuzzy and rough sets dividing into three parts. In the first part, we first desc...
This paper presents a new extension of fuzzy sets: R-fuzzy sets. The membership of an element of a R-fuzzy set is represented as a rough set. This new extension facilitates the representation of an uncertain fuzzy membership with a rough approximation. Based on our definition of R-fuzzy sets and their operations, the relationships between R-fuzzy sets and other fuzzy sets are discussed and some...
The objective of this chapter is to provide a semantic framework for fuzzy sets in the theory of rough sets. Rough membership functions are viewed as a special type of fuzzy membership functions interpretable using conditional probabilities. The relationships between fuzzy membership functions and rough membership functions, between core and support of fuzzy set theory and lower and upper appro...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید