نتایج جستجو برای: layer perceptron artificial neural network ann
تعداد نتایج: 1275874 فیلتر نتایج به سال:
In this work, the artificial neural networks (ANN) technology was applied to the simulation of oleuropein extraction process. For this technology, a 3-layer network structure is applied, and the operation factors such as amount of flow intensity ratio, temperature, residence time, and pH are used as input variables of the network, whereas the extraction yield is considere...
Performance comparison of land change modeling techniques for land use projection of arid watersheds
The change of land use/land cover has been known as an imperative force in environmental alteration, especially in arid and semi-arid areas. This research was mainly aimed to assess the validity of two major types of land change modeling techniques via a three dimensional approach in Birjand urban watershed located in an arid climatic region of Iran. Thus, a Markovian approach based on two suit...
One of the natural disasters that occurs in abundance in Iran, due to the geological structure, morphological and seismic conditions, and damages the lives and property of people is a landslide. Roodbar Alamoot watershed in the east of Qazvin province is a mountainous region with a high potential for occurrence of landslides. Because of their active status, there is also a growing trend of...
The lack of sediment gauging stations in the process of wind erosion, caused of estimate of sediment be process of necessary and important. Artificial neural networks can be used as an efficient and effective of tool to estimate and simulate sediments. In this paper two model multi-layer perceptron neural networks and radial neural network was used to estimate the amount of sediment in Korsya o...
A functional relationship between two variables, applied mass to a weighing platform and estimated mass using Multi-Layer Perceptron Artificial Neural Networks is approximated by a linear function. Linear relationships and correlation rates are obtained which quantitatively verify that the Artificial Neural Network model is functioning satisfactorily. Estimated mass is achieved through recallin...
In recent years, deep learning based on artificial neural network (ANN) has achieved great success in pattern recognition. However, there is no clear understanding of such neural computational models [1], for instance, for a trained ANN-classifier, we have no idea of why some classes are easy to be predicted correctly, but some are difficult to be predicted correctly. In this paper, we try to u...
Introduction: It is of utmost importance to predict cardiovascular diseases correctly. Therefore, it is necessary to utilize those models with a minimum error rate and maximum reliability. This study aimed to combine an artificial neural network with the genetic algorithm to assess patients with myocardial infarction and congestive heart failure. Materials & Methods: This study utilized a m...
cox regression model serves as a statistical method for analyzing the survival data, which requires some options such as hazard proportionality. in recent decades, artificial neural network model has been increasingly applied to predict survival data. this research was conducted to compare cox regression and artificial neural network models in prediction of kidney transplant survival. the prese...
The research presented in this paper is based on the artificial neural networks recognition paradigm applied to Romanian isolated word recognition. The network, which is composed by three layer (a Multilayer Perceptron), is trained by conventional Back-propagation algorithm. The ANN speech recognition system based on Mel Frequency Cepstral Coefficients was developed using Matlab toolkit. The sy...
In this study, we used the ARIMA time series model, the fuzzy-neural inference network, multi-layer perceptron artificial neural network, and ARIMA-ANN, ARIMA-ANFIS hybrid models for the modeling and prediction of the daily electrical conductivity parameter of daily teleZang hydrometric station over the statistical period of 49 years. For this purpose, the daily data for the 1996-2004 period we...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید