نتایج جستجو برای: nsga optimization
تعداد نتایج: 318922 فیلتر نتایج به سال:
Distribution centers (DCs) play important role in maintaining the uninterrupted flow of goods and materials between the manufacturers and their customers.This paper proposes a mathematical model as the bi-objective capacitated multi-vehicle allocation of customers to distribution centers. An evolutionary algorithm named non-dominated sorting ant colony optimization (NSACO) is used as the optimi...
In Guided Evolutionary Multi-objective Optimization the goal is to find a diverse, but locally focused non-dominated front in a decision maker’s area of interest, as close as possible to the true Paretofront. The optimization can focus its efforts towards the preferred area and achieve a better result [9, 17, 7, 13]. The modeled and simulated systems are often stochastic and a common method to ...
NSGA ( [5]) is a popular non-domination based genetic algorithm for multiobjective optimization. It is a very effective algorithm but has been generally criticized for its computational complexity, lack of elitism and for choosing the optimal parameter value for sharing parameter σshare. A modified version, NSGAII ( [3]) was developed, which has a better sorting algorithm , incorporates elitism...
Controllers design problems are multi objective optimization problems as the controller must satisfy several performance measures that are often conflicting and competing with each other. In multi-objective approach a set of solutions can be generated from which the designer can select a final solution according to his requirement and need. This paper presents the design and analysis Proportion...
In this paper we propose two novel approaches for solving constrained multi-objective optimization problems using steady state GAs. These methods are intended for solving real-world application problems that have many constraints and very small feasible regions. One method called Objective Exchange Genetic Algorithm for Design Optimization (OEGADO) runs several GAs concurrently with each GA opt...
Antenna design problems often require the optimization of several conflicting objectives such as gain maximization, sidelobe level (SLL) reduction and input impedance matching. Multiobjective Evolutionary Algorithms (MOEAs) are suitable optimization techniques for solving such problems. An efficient algorithm is Generalized Differential Evolution (GDE3), which is a multi-objective extension of ...
many real water resources optimization problems involve conflicting objectives. in this study, multiobjective genetic algorithm nsga-ii, has been developed for optimization the conjunctive use of surface water and groundwater resources and optimal management of supply and demand of agricultural water. here, optimal allocation of land and water resources to the dominant products in najaf abad pl...
A NSGA-II Approach to the Bi-objective Multi-vehicle Allocation of Customers to Distribution Centers
This study proposes a bi-objective model for capacitated multi-vehicle allocation of customers to potential distribution centers (DCs).The optimization objectives are to minimize transit time and total cost including opening cost, assumed for opening potential DCs and shipping cost from DCs to the customers where considering heterogeneous vehicles lead to a more realistic model and cause more c...
Constellation design is a typical multiple peaks, multiple valleys and non-linear multi-objective optimization problem. How to design satellite constellation is one of the key sectors of research in the aerospace field. In this paper, in order to improve the global convergence and diversity performance of traditional constellation optimization algorithm, multi-parent arithmetic crossover and SB...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید