نتایج جستجو برای: signed domination number
تعداد نتایج: 1184408 فیلتر نتایج به سال:
1)فرض کنید g=(v,e) یک گراف ساده باشد.همسا یگی بسته رأس v?v را بصورت زیر نشان می دهیم : n[v]={u:uv?e}?{v} 2)تابعf:v?{-1,1} را تابع غالب علامت دار(signed dominating function یا به اختصار s.d.f) نامیم هرگاه به ازای هر v?v داشته باشیم f[v]=?_(u?n[v])?f(u) ?1:. 3)وزنfکه یکsdfمی باشد به صورت مقابل تعریف می شود: f(g)=?_(v?v)?f(v) . 4)می نیمم وزن تابع غالب علامتدار تعریف شده روی گراف g را با نماد?_s ...
Let $G$ be a finite and simple graph with vertex set $V(G)$. A nonnegative signed total Roman dominating function (NNSTRDF) on a graph $G$ is a function $f:V(G)rightarrow{-1, 1, 2}$ satisfying the conditionsthat (i) $sum_{xin N(v)}f(x)ge 0$ for each $vin V(G)$, where $N(v)$ is the open neighborhood of $v$, and (ii) every vertex $u$ for which $f(u...
This paper is motivated by the concept of nonnegative signed domination that was introduced by Huang, Li, and Feng in 2013 [15]. We study the non-negative signed domination problem from the theoretical point of view. For networks modeled by strongly chordal graphs and distance-hereditary graphs, we show that the non-negative signed domination problem can be solved in polynomial time. For networ...
In this paper, we give upper bounds on the upper signed domination number of [l, k] graphs, which generalize some results obtained in other papers. Further, good lower bounds are established for the minus ksubdomination number γ−101 ks and signed k-subdomination number γ −11 ks .
Let $D$ be a finite and simple digraph with vertex set $V(D)$.A signed total Roman $k$-dominating function (STR$k$DF) on$D$ is a function $f:V(D)rightarrow{-1, 1, 2}$ satisfying the conditionsthat (i) $sum_{xin N^{-}(v)}f(x)ge k$ for each$vin V(D)$, where $N^{-}(v)$ consists of all vertices of $D$ fromwhich arcs go into $v$, and (ii) every vertex $u$ for which$f(u)=-1$ has a...
Let D be a finite and simple digraph with the vertex set V (D), and let f : V (D) → {−1, 1} be a two-valued function. If∑ x∈N[v] f(x) ≥ 1 for each v ∈ V (D), where N[v] consists of v and all vertices of D from which arcs go into v, then f is a signed dominating function on D. The sum f(V (D)) is called the weight w(f) of f . The minimum of weights w(f), taken over all signed dominating function...
A two-valued function f defined on the vertices of a graph G = (V,E), f : V → {−1, 1}, is a signed total dominating function if the sum of its function values over any open neighborhood is at least one. That is, for every v ∈ V, f(N(v)) ≥ 1, where N(v) consists of every vertex adjacent to v. The weight of a total signed dominating function is f(V ) = ∑ f(v), over all vertices v ∈ V . The total ...
Let k ≥ 1 be an integer, and let D = (V, A) be a finite and simple digraph in which dD(v) ≥ k for all v ∈ V . A function f : V −→ {−1, 1} is called a signed total k-dominating function (STkDF) if f(N−(v)) ≥ k for each vertex v ∈ V . The weight w(f) of f is defined by w(f) = ∑ v∈V f(v). The signed total k-domination number for a digraph D is γ kS(D) = min{w(f) | f is a STkDF of D}. In this paper...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید