نتایج جستجو برای: chebyshev acceleration technique

تعداد نتایج: 658725  

In this paper, a method based on Chebyshev polynomials is developed for examination of geometrically nonlinear behaviour of thin rectangular composite laminated plates under end-shortening strain. Different boundary conditions and lay-up configurations are investigated and classical laminated plate theory is used for developing the equilibrium equations. The equilibrium equations are solved dir...

Journal: :J. Comput. Physics 2010
Yunkai Zhou

We propose a block Davidson-type subspace iteration using Chebyshev polynomial filters for large symmetric/hermitian eigenvalue problem. The method consists of three essential components. The first is an adaptive procedure for constructing efficient block Chebyshev polynomial filters; the second is an inner–outer restart technique inside a Chebyshev–Davidson iteration that reduces the computati...

2014
Junghan Kim Wonkyu Chung Sunyoung Bu Philsu Kim

In this paper, we introduce a generalized Chebyshev collocation method (GCCM) based on the generalized Chebyshev polynomials for solving stiff systems. For employing a technique of the embedded Runge-Kutta method used in explicit schemes, the property of the generalized Chebyshev polynomials is used, in which the nodes for the higher degree polynomial are overlapped with those for the lower deg...

2006
Venkatesh Deshmukh Haitao Ma Eric A. Butcher

The use of Chebyshev polynomials in solving finite horizon optimal control problems associated with general linear time-varying systems with constant delay is well known in the literature. The technique is modified in the present paper for the finite horizon control of dynamical systems with time periodic coefficients and constant delay. The governing differential equations of motion are conver...

2015
Mohammad A. ALQUDAH

We characterize the generalized Chebyshev polynomials of the second kind (Chebyshev-II), and then we provide a closed form of the generalized Chebyshev-II polynomials using the Bernstein basis. These polynomials can be used to describe the approximation of continuous functions by Chebyshev interpolation and Chebyshev series and how to efficiently compute such approximations. We conclude the pap...

Journal: :computational methods for differential equations 0
mehdi ramezani tafresh university

the main purpose of this paper is to propose a new numerical method for solving the optimal control problems based on state parameterization. here, the boundary conditions and the performance index are first converted into an algebraic equation or in other words into an optimization problem. in this case, state variables will be approximated by a new hybrid technique based on new second kind ch...

Journal: :sahand communications in mathematical analysis 2015
h. r. marasi m. daneshbastam

the work  addressed in this paper is a comparative study between convergence of the  acceleration techniques, diagonal pad'{e} approximants and shanks transforms, on homotopy analysis method  and adomian decomposition method for solving  differential equations of integer and fractional orders.

2013
Yiming CHEN Lu SUN Lili LIU Jiaquan XIE

By using the integral operational matrix and the product operation matrix of the Chebyshev wavelet, a class of nonlinear fractional integral-differential equations of Bratu-type is transformed into nonlinear algebraic equations, which makes the solution process and calculation more simple. At the same time, reliable approaches for uniqueness and convergence of the Chebyshev wavelet method are d...

2010
Hojatollah Adibi Pouria Assari

A computational method for solving Fredholm integral equations of the first kind is presented. The method utilizes Chebyshev wavelets constructed on the unit interval as basis in Galerkin method and reduces solving the integral equation to solving a system of algebraic equations. The properties of Chebyshev wavelets are used to make the wavelet coefficient matrices sparse which eventually leads...

Based on reproducing kernel theory, an effective numerical technique is proposed for solving second order linear two-point boundary value problems with deviating argument. In this method, reproducing kernels with Chebyshev polynomial form are used (C-RKM). The convergence and an error estimation of the method are discussed. The efficiency and the accuracy of the method is demonstrated on some n...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید