﻿ Esmail Babolian

# Esmail Babolian

Department of Computer Science, Faculty of Mathematical Sciences and Computer, Kharazmi University, Tehran, Iran

## [ 1 ] - Fractional-order Legendre wavelets and their applications for solving fractional-order differential equations with initial/boundary conditions

In this manuscript a new method is introduced for solving fractional differential equations. The fractional derivative is described in the Caputo sense. The main idea is to use fractional-order Legendre wavelets and operational matrix of fractional-order integration. First the fractional-order Legendre wavelets (FLWs) are presented. Then a family of piecewise functions is proposed, based on whi...

## [ 2 ] - An efficient approximate method for solution of the heat equation using Laguerre-Gaussians radial functions

In the present paper, a numerical method is considered for solving one-dimensional heat equation subject to both Neumann and Dirichlet initial boundary conditions. This method is a combination of collocation method and radial basis functions (RBFs). The operational matrix of derivative for Laguerre-Gaussians (LG) radial basis functions is used to reduce the problem to a set of algebraic equatio...

## [ 3 ] - Numerical Study of Unsteady Flow of Gas Through a Porous Medium By Means of Chebyshev Pseudo-Spectral Method

In this work, we first reformulate the unsteady flow of gas through a porous medium problem in [0,+∞) to a problem in [-1,1] by variable transformation μ = (x-s)/(x+s), and using spectral collocation method based on Chebyshev polynomials to approximate the resulting problem. The comparison of the results obtained by this method with results obtained by other methods shows that this method provi...

## [ 4 ] - A solution for Volterra Integral Equations of the First Kind Based on Bernstein Polynomials

In this paper, we present a new computational method to solve Volterra integral equations of the first kind based on Bernstein polynomials. In this method, using operational matrices turn the integral equation into a system of equations. The computed operational matrices are exact and new. The comparisons show this method is acceptable. Moreover, the stability of the proposed method is studied.

## [ 5 ] - Application of fractional-order Bernoulli functions for solving fractional Riccati differential equation

In this paper, a new numerical method for solving the fractional Riccati differential  equation is presented. The fractional derivatives are described in the Caputo sense. The method is based upon  fractional-order Bernoulli functions approximations. First, the  fractional-order Bernoulli functions and  their properties are  presented. Then, an operational matrix of fractional order integration...

## [ 6 ] - A numerical scheme for space-time fractional advection-dispersion equation

In this paper, we develop a numerical resolution of the space-time fractional advection-dispersion equation. We utilize spectral-collocation method combining with a product integration technique in order to discretize the terms involving spatial fractional order derivatives that leads to a simple evaluation of the related terms. By using Bernstein polynomial basis, the problem is transformed in...

## [ 7 ] - An ‎E‎ffective Numerical Technique for Solving Second Order Linear Two-Point Boundary Value Problems with Deviating Argument

Based on reproducing kernel theory, an effective numerical technique is proposed for solving second order linear two-point boundary value problems with deviating argument. In this method, reproducing kernels with Chebyshev polynomial form are used (C-RKM). The convergence and an error estimation of the method are discussed. The efficiency and the accuracy of the method is demonstrated on some n...

## [ 8 ] - Local Annihilation Method ‎and‎ Some Stiff ‎Problems

In this article‎, ‎a new scheme inspired from collocation method is‎ ‎presented for numerical solution of stiff initial-value problems and Fredholm integral equations of the first kind based on the derivatives of residual function‎. ‎Then‎, ‎the error analysis‎ ‎of this method is investigated by presenting an error bound‎. ‎Numerical comparisons indicate that the‎ ‎presented method yields accur...