Pseudo-spectral ‎M‎atrix and Normalized Grunwald Approximation for Numerical Solution of Time Fractional Fokker-Planck Equation

نویسندگان

  • E. Babolian Faculty of Mathematical Sciences and Computer, Kharazmy University, Tehran, Iran.
  • M. Javidi Department of Mathematics, Faculty of Mathematical Sciences, University of Tabriz, Tabriz, Iran.
  • S. Gholami Department of Mathematics‎, ‎East Tehran ‎Branch‎, ‎Islamic Azad University‎, ‎Tehran‎, ‎Iran.
چکیده

This paper presents a new numerical method to solve time fractional Fokker-Planck equation. The space dimension is discretized to the Gauss-Lobatto points, then we apply pseudo-spectral successive integration matrix for this dimension. This approach shows that with less number of points, we can approximate the solution with more accuracy. The numerical results of the examples are displayed.

برای دانلود باید عضویت طلایی داشته باشید

برای دسترسی به متن کامل این مقاله و 10 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fractional Fokker-Planck equation, solution, and application.

Recently, Metzler et al. [Phys. Rev. Lett. 82, 3563 (1999)], introduced a fractional Fokker-Planck equation (FFPE) describing a subdiffusive behavior of a particle under the combined influence of external nonlinear force field, and a Boltzmann thermal heat bath. In this paper we present the solution of the FFPE in terms of an integral transformation. The transformation maps the solution of ordi...

متن کامل

A Novel High Order Space-Time Spectral Method for the Time Fractional Fokker-Planck Equation

The fractional Fokker–Planck equation is an important physical model for simulating anomalous diffusions with external forces. Because of the nonlocal property of the fractional derivative an interesting problem is to explore high accuracy numerical methods for fractional differential equations. In this paper, a space-time spectral method is presented for the numerical solution of the time frac...

متن کامل

Fractional Fokker-Planck equation for fractal media.

We consider the fractional generalizations of equation that defines the medium mass. We prove that the fractional integrals can be used to describe the media with noninteger mass dimensions. Using fractional integrals, we derive the fractional generalization of the Chapman-Kolmogorov equation (Smolukhovski equation). In this paper fractional Fokker-Planck equation for fractal media is derived f...

متن کامل

Fokker Planck Equation for Fractional Systems

The normalization condition, average values, and reduced distribution functions can be generalized by fractional integrals. The interpretation of the fractional analog of phase space as a space with noninteger dimension is discussed. A fractional (power) system is described by the fractional powers of coordinates and momenta. These systems can be considered as non-Hamiltonian systems in the usu...

متن کامل

Parameters of the fractional Fokker-Planck equation

We study the connection between the parameters of the fractional Fokker-Planck equation, which is associated with the overdamped Langevin equation driven by noise with heavytailed increments, and the transition probability density of the noise generating process. Explicit expressions for these parameters are derived both for finite and infinite variance of the rescaled transition probability de...

متن کامل

Numerical Computation of Time-Fractional Fokker–Planck Equation Arising in Solid State Physics and Circuit Theory

The main aim of the present work is to propose a new and simple algorithm to obtain a quick and accurate analytical solution of the time fractional Fokker–Plank equation which arises in various fields in natural science, including solid-state physics, quantum optics, chemical physics, theoretical biology, and circuit theory. This new and simple algorithm is an innovative adjustment in Laplace t...

متن کامل

ذخیره در منابع من

ذخیره در منابع من ذخیره شده در منابع من

{@ msg_add @}

  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی راحت تر خواهید کرد

دانلود متن کامل

برای دسترسی به متن کامل این مقاله و 10 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید


عنوان ژورنال:

دوره 13  شماره 1

صفحات  1- 13

تاریخ انتشار 2021-09-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2021