﻿ A. R. Vahidi

# A. R. Vahidi

Department of Mathematics, Shahr-e-Rey Branch, Islamic Azad University

## [ 1 ] - COMPARING NUMERICAL METHODS FOR THE SOLUTION OF THE DAMPED FORCED OSCILLATOR PROBLEM

In this paper, we present a comparative study between the Adomian decomposition method and two classical well-known Runge-Kutta and central difference methods for the solution of damped forced oscillator problem. We show that the Adomian decomposition method for this problem gives more accurate approximations relative to other numerical methods and is easier to apply.

## [ 2 ] - Approximate Solution of the Second Order Initial Value Problem by Using Epsilon Modified Block-Pulse Function

The present work approaches the problem of achieving the approximate solution of the second order initial value problems (IVPs) via its conversion into a Volterra integral equation of the second kind (VIE2). Therefore, we initially solve the IVPs using Runge–Kutta of the forth–order method (RK), and then convert it into VIE2, and apply the εmodified block–pulse functions (εMBPFs) and their oper...

## [ 3 ] - Approximate Solution of Linear Volterra-Fredholm Integral Equations and Systems of Volterra-Fredholm Integral Equations Using Taylor Expansion Method

In this study, a new application of Taylor expansion is considered to estimate the solution of Volterra-Fredholm integral equations (VFIEs) and systems of Volterra-Fredholm integral equations (SVFIEs). Our proposed method is based upon utilizing the nth-order Taylor polynomial of unknown function at an arbitrary point and employing integration method to convert VFIEs into a system of linear equ...

## [ 4 ] - Solving Volterra Integral Equations of the Second Kind with Convolution ‎Kernel‎

In this paper, we present an approximate method to solve the solution of the second kind Volterra integral equations. This method is based on a previous scheme, applied by Maleknejad ‎et al., ‎‎[K. Maleknejad ‎and Aghazadeh, Numerical solution of Volterra integral equations of the second kind with convolution kernel by using Taylor-series expansion method, ‎Appl. Math. Comput.‎ (2005)]‎ to gain...

نویسندگان همکار