نتایج جستجو برای: incoherence dictionary learning
تعداد نتایج: 618286 فیلتر نتایج به سال:
A new dictionary learning method for exact sparse representation is presented in this paper. As the dictionary learning methods often iteratively update the sparse coefficients and dictionary, when the approximation error is small or zero, algorithm convergence will be slow or non-existent. The proposed framework can be used in such a setting by gradually increasing the fidelity of the approxim...
Abstract. Dictionary learning is a challenge topic in many image processing areas. The basic goal is to learn a sparse representation from an overcomplete basis set. Due to combining the advantages of generic multiscale representations with learning based adaptivity, multiscale dictionary representation approaches have the power in capturing structural characteristics of natural images. However...
In this paper, we propose a new sampling strategy for hyperspectral signals that is based on dictionary learning and singular value decomposition (SVD). Specifically, we first learn a sparsifying dictionary from training spectral data using dictionary learning. We then perform an SVD on the dictionary and use the first few left singular vectors as the rows of the measurement matrix to obtain th...
Given a ‘dictionary’ D = {dk} of vectors dk, we seek to represent a signal S as a linear combination S = ∑ k γ(k)dk, with scalar coefficients γ(k). In particular, we aim for the sparsest representation possible. In general, this requires a combinatorial optimization process. Previous work considered the special case where D is an overcomplete system consisting of exactly two orthobases, and has...
In this paper we consider the dictionary learning problem for sparse representation. We first show that this problem is NP-hard by polynomial time reduction of the densest cut problem. Then, using successive convex approximation strategies, we propose efficient dictionary learning schemes to solve several practical formulations of this problem to stationary points. Unlike many existing algorith...
Dictionary learning plays an important role in machine learning, where data vectors are modeled as a sparse linear combinations of basis factors (i.e., dictionary). However, how to conduct dictionary learning in noisy environment has not been well studied. Moreover, in practice, the dictionary (i.e., the lower rank approximation of the data matrix) and the sparse representations are required to...
the study aimed at investigating whether the retention of vocabulary acquired incidentally is dependent upon the amount of task-induced involvement. immediate and delayed retention of twenty unfamiliar words was examined in three learning tasks( listening comprehension + group discussion, listening comprehension + dictionary checking + summary writing in l1, and listening comprehension + dictio...
With the growth of demand for security and safety, video-based surveillance systems have been employed in a large number of rural and urban areas. The problem of such systems lies in the detection of patterns of behaviors in a dataset that do not conform to normal behaviors. Recently, for behavior classification and abnormal behavior detection, the sparse representation approach is used. In thi...
Sparse coding plays a key role in high dimensional data analysis. One critical challenge of sparse coding is to design a dictionary that is both adaptive to the training data and generalizable to unseen data of same type. In this paper, we propose a novel dictionary learning method to build an adaptive dictionary regularized by an a-priori over-completed dictionary. This leads to a sparse struc...
Sparse coding, which is represented a vector based on sparse linear combination of a dictionary, is widely applied on signal processing, data mining and neuroscience. How to get a proper dictionary is a problem, which is data dependent and computational cost. In this paper, we treat dictionary learning in the unsupervised learning view and proposed Laplacian score dictionary (LSD). This new met...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید