نتایج جستجو برای: legendre gauss collocation method

تعداد نتایج: 1641861  

Journal: :bulletin of the iranian mathematical society 0
h. marzban h. tabrizidooz

properties of the hybrid of block-pulse functions and lagrange polynomials based on the legendre-gauss-type points are investigated and utilized to define the composite interpolation operator as an extension of the well-known legendre interpolation operator. the uniqueness and interpolating properties are discussed and the corresponding differentiation matrix is also introduced. the applicabili...

2014
Ali H. Bhrawy M. M. Al-Shomrani Xiaodong Yan

and Applied Analysis 3 nonlinear term is treated with the Chebyshev collocation method. The time discretization is a classical Crank-Nicholson-leap-frog scheme. Yuan and Wu 43 extended the Legendre dual-Petrov-Galerkin method proposed by Shen 44 , further developed by Yuan et al. 45 to general fifth-order KdV-type equations with various nonlinear terms. The main aim of this paper is to propose ...

Journal: :Applied Mathematics and Computation 2015
Nehzat Ebrahimi Jalil Rashidinia

A collocation procedure is developed for the linear and nonlinear Fredholm and Volterra integral equations, using the globally defined B-spline and auxiliary basis functions. The solution is collocated by cubic B-spline and then the integral equation is approximated by the 5-points Gauss–Turán quadrature formula with respect to the Legendre weight function. Combination of these two approaches i...

Hossein Jafari , M. Arab.Firoozjaee , M. Soleymanivaraki ,

In this paper, we develop a framework to obtain approximate numerical solutions to ordi‌nary differential equations (ODEs) involving fractional order derivatives using Legendre wavelets approximations. The continues Legendre wavelets constructed on [0, 1] are uti‌lized as a basis in collocation method. Illustrative examples are included to demonstrate the validity and applicability of the techn...

Journal: :J. Sci. Comput. 2014
Can Huang Zhimin Zhang

In this paper, a symmetric Jacobi–Gauss collocation scheme is explored for both linear and nonlinear differential-algebraic equations (DAEs) of arbitrary index.After standard index reduction techniques, a type of Jacobi–Gauss collocation scheme with N knots is applied to differential part whereas another type of Jacobi–Gauss collocation scheme with N + 1 knots is applied to algebraic part of th...

Journal: :J. Computational Applied Mathematics 2014
Payel Das Mitali Madhumita Sahani Gnaneshwar Nelakanti

In this paper, we consider the Legendre spectral Galerkin and Legendre spectral collocation methods to approximate the solution of Urysohn integral equation. We prove that the approximated solutions of the Legendre Galerkin and Legendre collocation methods converge to the exact solution with the same orders, O(n−r) in L2-norm and O(n 1 2 −r) in infinity norm, and the iterated Legendre Galerkin ...

2015
A. H. BHRAWY M. A. ZAKY D. BALEANU

Burgers’ equation is a fundamental partial differential equation in fluid mechanics. This paper reports a new space-time spectral algorithm for obtaining an approximate solution for the space-time fractional Burgers’ equation (FBE) based on spectral shifted Legendre collocation (SLC) method in combination with the shifted Legendre operational matrix of fractional derivatives. The fractional der...

2014
M. M. Khader A. M. S. Mahdy M. M. Shehata

In this paper, we propose and analyze some schemes of the integral collocation formulation based on Legendre polynomials. We implement these formulae to solve numerically Riccati, Logistic and delay differential equations with variable coefficients. The properties of the Legendre polynomials are used to reduce the proposed problems to the solution of non-linear system of algebraic equations usi...

Properties of the hybrid of block-pulse functions and Lagrange polynomials based on the Legendre-Gauss-type points are investigated and utilized to define the composite interpolation operator as an extension of the well-known Legendre interpolation operator. The uniqueness and interpolating properties are discussed and the corresponding differentiation matrix is also introduced. The appl...

1996
Jie Shen

We introduce a new and eecient Chebyshev-Legendre Galerkin method for elliptic problems. The new method is based on a Legendre-Galerkin formulation, but only the Chebyshev-Gauss-Lobatto points are used in the computation. Hence, it enjoys advantages of both the Legendre-Galerkin and Chebyshev-Galerkin methods.

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید