نتایج جستجو برای: namely genetic algorithm ga and particle swarm optimization pso are developed

تعداد نتایج: 17214482  

Journal: :amirkabir international journal of electrical & electronics engineering 2014
b. farhadi s.h. shahalami e. fallah choolabi

in this paper, a new approach is proposed for the optimum design of single-phase induction motor. by using the classical design equations and the evolutionary algorithms such as genetic algorithms (ga), particle swarm optimization (pso) and modified particle swarm optimization (mpso), a single phase induction motor (spim) was designed with the maximum efficiency. the finite element method (fem)...

Mixed model two-sided assembly lines (MM2SAL) are applied to assemble large product models, which is produced in high-volume. So, the sequence planning of products to reduce cost and increase productivity in this kind of lines is imperative. The presented problem is tackled in two steps. In step 1, a framework is developed to select and prioritize customer orders under the finite capacity of th...

The vast use of Linear Prediction Coefficients (LPC) in speech processing systems has intensified the importance of their accurate computation. This paper is concerned with computing LPC coefficients using evolutionary algorithms: Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Dif-ferential Evolution (DE) and Particle Swarm Optimization with Differentially perturbed Velocity (PSO-DV...

2013
Linli Jiang Jiansheng Wu

Accurate and timely weather forecasting is a major challenge for the scientific community in hydrological research such as river training works and design of flood warning systems. Neural Network (NN) is a popular regression method in rainfall predictive modeling. This paper investigates the effectiveness of the hybrid Particle Swarm Optimization (PSO) and Genetic Algorithm (GA) evolved neural ...

2013
T. Geetha

Evolutionary algorithm and Swarm Intelligence algorithm (EA, SI), a part of Bio inspired optimization algorithm, have been widely used to solve numerous optimization problem in various science and engineering domains. This paper proposes a Multi Swarm Particle Swarm Optimization (MS-PSO) algorithm inspired by the animal collective behavior, the movement of the swarm and the intelligence of the ...

2017
V. Jagan Mohan T. Arul Dass Albert

Abstract—In real world applications, optimization is an inevitable stage in any engineering design. In recent days the optimization theory is also fused into other sciences which require precision in its final result. This topic sounds like a promising domain for research almost in all areas of science and technology. Perhaps several solution methods are proposed for solving problems that requi...

2007
Tao Gong Andrew L. Tuson

Particle Swarm Optimization (PSO) is an innovative and competitive optimization technique for numerical optimization with real-parameter representation. This paper examines the working mechanism of PSO in a principled manner with forma analysis and investigates the applicability of PSO on the Quadratic Assignment Problem (QAP). Particularly, the derived PSO operator for QAP is empirically studi...

2009
MILAN R. RAPAIĆ ŽELJKO KANOVIĆ ZORAN D. JELIČIĆ

In this paper an extensive theoretical and empirical analysis of recently introduced Particle Swarm Optimization algorithm with Convergence Related parameters (CR-PSO) is presented. The convergence of the classical PSO algorithm is addressed in detail. The conditions that should be imposed on parameters of the algorithm in order for it to converge in mean-square have been derived. The practical...

Quad rotor is a renowned underactuated Unmanned Aerial Vehicle (UAV) with widespread military and civilian applications. Despite its simple structure, the vehicle suffers from inherent instability. Therefore, control designers always face formidable challenge in stabilization and control goal. In this paper fuzzy membership functions of the quad rotor’s fuzzy controllers are optimized using nat...

2014
Hieu Pham Tam Bui Hiroshi Hasegawa

This paper describes an evolutionary strategy called PSOGA-NN, which uses Neural Network (NN) for selfadaptive control of hybrid Particle Swarm Optimization and Adaptive Plan system with Genetic Algorithm (PSO-APGA) to solve large scale problems and constrained real-parameter optimization. This approach combines the search ability of all optimization techniques (PSO, GA) for stability of conver...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید