نتایج جستجو برای: شبکه عصبی پیشخور چند لایه
تعداد نتایج: 128774 فیلتر نتایج به سال:
کشورایران در بینمدارهای 25 تا 40 درجه عرض شمالی قرار گرفته است. میزان تابش خورشیدی در ایرانبین 1800 تا 2200 کیلووات ساعت بر مترمربع در سال تخمین زده شده است. در ایران به طور متوسط سالیانهبیش از 280 روزآفتابی گزارش شده است کهبسیار قابل توجه است. با توجه به این تعداد روز ساعت آفتابی در کشور آگاهی از پهنه بندی مناسب تشعشع خورشیدی جهت بهره وری مناسب نیاز به رسم نقشه های تشعشع خورشیدی است. در این پا...
در این مقاله از الگوریتم تازه گسترش یافته کرم شب تاب برای بهینه سازی فرآیند برش شیشه با جت آب همراه با ذرات ساینده که فرآیندی چند متغیره غیر خطی است، استفاده گردید. در روش پیشنهادی به منظور مدل سازی و پیش بینی زبری سطح فرآیند برش شیشه؛ با توجه به پارامترهای فرآیند شامل فشار جت آب، سرعت پیشروی، نرخ ریزش ذرات ساینده و فاصله نازل تا سطح قطعه کار از شبکه عصبی مصنوعی پیشخور با باز انتشار خطا استفاده...
امروزه عیبیابی ماشینهای دوار از راه تشخیص علائم شروع و رشد عیب با استفاده از روش های هوشمند، شناسایی علت و قطعات آسیب دیده و پیشگویی میزان عمرکاری باقیماندة ماشین، نقش مهمی در جلوگیری از آسیبدیدگی شدید ماشین و هزینههای بالای تعمیرات بر عهده دارند. هدف این تحقیق نیز استفاده از ساختار هوشمند شبکههای فازی- عصبی و عصبی چند لایه در تشخیص عیوب اصلی ماشینهای دوار از جمله نابالانسی، ناهمراستایی،...
مسکن همواره نیازی اساسی در جامعه تلقی میگردد. بازار مسکن طی سالهای گذشته یکی از پرنوسان-ترین بخشهای اقتصاد کشور ایران بوده است. از آنجایی که نغییرات بخش مسکن تاثیر فراوانی بر سایر بخشهای اقتصاد دارد بنابراین یکی از نیازهای قابل توجه در امر مسکن، پیشبینی دقیق قیمت این کالا می-باشد. در این راستا در پژوهش حاضر با استفاده از شبکه عصبی مصنوعی پرسپترون چند لایه، مدلی برای پیشبینی قیمت مسکن در ش...
هدف اصلی تحقیق حاضر بررسی دقت پیشبینی مدیریت سود با استفاده از شبکههای عصبی و درخت تصمیمگیری و مقایسه آن با مدلهای خطی است. برای این منظور از یازده متغیر تأثیرگذار بر مدیریت سود بهعنوان متغیرهای مستقل و اقلام تعهدی اختیاری بهعنوان متغیر وابسته استفاده شده است. در این تحقیق تعداد 55 شرکت از سال 1385 تا سال 1388 به صورت فصلی مورد بررسی قرار گرفت. از روش رگرسیون پنلی جهت مدل خطی و از شبکه عص...
پژوهش حاضر به مطالعه پیش بینی ورشکستگی مالی شرکت های پذیرفته شده در بورس اوراق بهادار تهران به وسیله شبکه های عصبی مصنوعی می پردازد. بهترین نسبت های مالی پیش بین در پژوهش های صورت گرفته در پیشینه موضوع به عنوان ورودی شبکه های عصبی انتخاب شده اند. شبکه عصبی به کار گرفته شده در این پژوهش از نوع پرسپترون چند لایه می باشد که به روش الگوریتم پس انتشار خطا آموزش دیده اند، و شامل شبکه عصبی پیشخور سه ل...
مسکن همواره نیازی اساسی در جامعه تلقی میگردد. بازار مسکن طی سالهای گذشته یکی از پرنوسان-ترین بخشهای اقتصاد کشور ایران بوده است. از آنجایی که نغییرات بخش مسکن تاثیر فراوانی بر سایر بخشهای اقتصاد دارد بنابراین یکی از نیازهای قابل توجه در امر مسکن، پیشبینی دقیق قیمت این کالا می-باشد. در این راستا در پژوهش حاضر با استفاده از شبکه عصبی مصنوعی پرسپترون چند لایه، مدلی برای پیشبینی قیمت مسکن در ش...
پیش بینی قیمت نفت خام یکی از مهمترین موضوعات پیش روی اقتصاد انرژی است. پیش بینی مناسب قیمت نفت و آن هم قیمت نفت خام اوپک، به دلیل متضمن بودن تعدادی از کشورهای در حال توسعه این سازمان با قیمت نفت، می تواند در برنامه ریزی های سازمان و کشورهای عضو آن، اهمیت ویژه ای داشته باشد. برآورد و پیش بینی روند قیمت نفت، به خاطر نبود دادههای تاریخی مهم و محدودیت اطلاعات مرتبط با شاخصهای موثر بر روند قیمت نفت،...
به دلیل نواقص موجود در روش های پیشین محاسبه بزرگای زلزله، شبکه عصبی به عنوان یک روش جدید برای این منظور آزمایش می گردد. در این مقاله نوعی شبکه عصبی با نام پرسپترون چندلایه برای پیش بینی بزرگای گشتاوری زلزله مورد استفاده قرار گرفته است. شبکه عصبی پرسپترون شامل سه لایه اصلی با نام های لایه ورودی، لایه پنهان و لایه خروجی است. ورودی های این شبکه شش متغیر مربوط به مکان و زمان وقوع زلزله و همچنین مشخ...
در این پژوهش، پس از مروری بر تاریخچه علم کنترل، رویکردهای قابل استفاده در طراحی سیستم کنترل بررسی شده است. در ادامه شبکه های عصبی به تفصیل شرح داده شده و در نهایت پس از آشنائی با اصول کاربردی علم کنترل، به موارد استفاده از آن ها در ماشین آلات، ریسندگی، بافندگی، رنگرزی و تکمیل و منسوجات بی بافت پرداخته شد و با مطالعه دقیق تر ماشین کارد الیاف کوتاه ادامه یافته است. در انتها روند مدل سازی ماشین کا...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید