نتایج جستجو برای: گراف مقسوم علیه صفر چنبره ای
تعداد نتایج: 258377 فیلتر نتایج به سال:
در این پایان نامه ابتدا در فصل اول تعاریف مورد نیاز را یاد آوری می کنیم و سپس در فصل دوم خواص و ساختار آن را بررسی می کنیم و در مورد هسته گراف مطالبی را ارائه می دهیم و همچنین بیان می کنیم که چه شرایطی لازم است تا یک گراف گراف متناظر با یک نیم گروه باشد.
فرض کنیم r حلقه جابجایی و z(r) مجموعه مقسوم علیه های صفر و reg(r) مجموعه اعضای منظم باشد. گراف تام از حلقه r را با ?(?(r)) نشان می دهیم. برخی خاصیتهای ?(?(r))، زمانیکه r حلقه جابجایی متناهی است را بررسی می کنیم و در این حالت یک کران بالا برای راس همبندی مشاهده می کنیم. همچنین ثابت می کنیم یال همبندی از ?(?(r)) برابر با مینیمم درجه آن است اگر و تنها اگر r حلقه جابجایی باشد بطوریکه z(r) ایده ...
گراف مقسوم علیه صفر حلقه ی r که با t(r نمایش داده می شود، گرافی است با مجموعه رئوس که دو رأس a و b در ان مجاورند اگر ab=0. در این پایان نامه، ابتدا با بررسی مسطح بودن یا نبودن گراف مقسوم علیه صفر حلقه ها تعویض پذیر و یک دار، تمام حلقه هایی که برای آن ها t(r مسطح است،؛ مشخص خواهد شد. سپس گرافی را معرفی خواهیم کرد که معتقدیم بهتر گراف مقسوم علیه صفر، خواص حلقه را تعیین می کند. در این گراف که آْن گ...
در این رساله مفهوم مقسوم علیه صفر قوی در حلقه ها را معرفی کرده و سپس در یک حلقه دلخواه به بررسی خواص مجموعه مقسوم علیه های صفر قوی پرداخته ایم. در این بررسی نتایجی حاصل شده است که به خواص مجموعه مقسوم علیه های صفر در یک حلقه تعویض پذیر نزدیک است. به علاوه گراف مقسوم علیه صفر قوی را معرفی کرده و خواص و ویژگی های آن و هم چنین ارتباط آن با گراف مقسوم علیه صفر را بررسی کرده ایم. در ادامه به تعیین...
در این پایان نامه، به مطالعه و بررسی گراف مقسوم علیه صفر وابسته به حلقه c(x) می پردازیم. با به کارگیری خواص توپولوژیکی فضای x،خواصی از این گراف مانند قطر، کمر و عدد خوشه ای را مورد بررسی قرار می دهیم. در پایان گراف مقسوم علیه صفر حلقه های جابجایی را نسبت به ایده آل ها مطالعه می نماییم.
در این پایان نامه خواصی از حلقه ی r را با در نظر گرفتن ?(r)‘ گراف مقسوم علیه صفر r‘ تحت عمل منظم g روی x بدست می آوریم. در فصل دوم ، فرض می کنیم r یک حلقه جابجایی یکدار، x مجموعه تمام غیر یکال های ناصفر r و g گروه تمام یکال های r است. اگر r یک حلقه و x اجتماع تعداد متناهی مدار تحت عمل منظم g روی x باشد، آن گاه نشان می دهیم که تعداد تمام ایده آل ها متناهی و بزرگتر یا مساوی تعداد مدارها است...
بررسی گراف مقسوم علیه فشرده صفر،تعریف ساختار گرافی جدید شبکه مقسوم علیه صفر(? (r از حلقه r ، و قضیه ای را بیان می کنیم که نشان دهد (? (r تقریبا همیشه همبند است.
برای حلقه ی جابجایی و یکدار r ، گراف مقسوم علیه های صفر حلقه ی r ، که با ( ?(rنشان داده می شود، گرافی ساده است که رأس های آن همه ی مقسوم علیه های صفر نابدیهی r، هستند و دو رأس متمایز x و y مجاور هستند، اگر و تنها اگر xy = 0 . در این پایان نامه به پرسش اندرسون لیوینگستون و فرزیر که گراف مقسوم علیه صفر کدام یک از حلقه های جابجایی متناهی مسطح است، پاسخ داده شده است.اساس کار بر پایه ی پژوهش های اک...
یک گراف مقسوم علیه صفر از یک حلقه جابجاییr ، گرافی است که رئوس آن را عناصر مقسوم علیه صفرz (r1)) r ) حلقه تشکیل می دهند و دو راس a و b با هم مجاورند اگروفقط اگر a.b=0. این گراف را با t(r) نشان می دهیم. بدیهی است که اگر r حلقه تحویل یافته باشد گراف مقسوم علیه صفر آن t (r) ساده خواهد بود. روی طیف ایده آل های اول حلقه (spec (r) r توپولوژی زاریسکی تعریف می کنیم. ماحصل آنچه که در این پایان نامه انجا...
برای حلقه ی جابه جایی و یکدار r، گراف مقسوم علیه صفر حلقه ی r، که با ?(r) نشان داده می شود، گرافی ساده است که رأس های آن همه ی مقسوم علیه های صفر نابهی r هستند و دو راس متمایز x و y مجاورند اگر و تنها اگر xy=0. در این پایان نامه رأس های برشی گراف مقسوم علیه صفر r را در حلقه های موضعی متناهی و حالت های غیر موضعی مورد مطالعه قرار می دهیم.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید