نتایج جستجو برای: hermitian form
تعداد نتایج: 700698 فیلتر نتایج به سال:
Let Λ be a ring endowed with an involution a 7→ ã. We say that two units a and b of Λ fixed under the involution are congruent if there exists an element u ∈ Λ× such that a = ubũ. We denote by H(Λ) the set of congruence classes. In this paper we consider the case where Λ is an order with involution in a semisimple algebraA over a local field and study the question whether the natural map H(Λ)→ ...
Let f : X → Spec(Z) be an arithmetic variety of dimension d ≥ 2 and (H, k) an arithmetically ample Hermitian line bundle on X, that is, a Hermitian line bundle with the following properties: (1) H is f -ample. (2) The Chern form c1(H∞, k) gives a Kähler form on X∞. (3) For every irreducible horizontal subvariety Y (i.e. Y is flat over Spec(Z)), the height ĉ1( (H, k)|Y ) dim Y of Y is positive. ...
Let M be a 2n dimensional smooth closed oriented manifold. Let g be a Riemmian metric on TM and ∇ the associated Levi-Civita connection. Let V be a complex vector bundle over M with a Hermitian metric h and a unitary connection ∇ . Let ΛC(T ∗M) be the complexified exterior algebra bundle of TM and let 〈 , 〉ΛC(T∗M) be the Hermitian metric on ΛC(T ∗M) induced by g . Let dv be the Riemannian volum...
A Hermitian Einstein-Weyl manifold is a complex manifold admitting a Ricci-flat Kähler covering M̃ , with the deck transform acting on M̃ by homotheties. If compact, it admits a canonical Vaisman metric, due to Gauduchon. We show that a Hermitian Einstein-Weyl structure on a compact complex manifold is determined by its volume form. This result is a conformal analogue of Calabi’s theorem stating ...
We obtain a technique to reduce the computational complexity associated with decoding of Hermitian codes. In particular, we propose a method to compute the error locations and values using an uni-variate error locator and an uni-variate error evaluator polynomial. To achieve this, we introduce the notion of Semi-Erasure Decoding of Hermitian codes and prove that decoding of Hermitian codes can ...
Canonical forms for matrix triples (A,G, Ĝ), where A is arbitrary rectangular andG, Ĝare either real symmetric or skew symmetric, or complex Hermitian or skew Hermitian, arederived. These forms generalize classical singular value decompositions. In [1] a similarcanonical form has been obtained for the complex case. In this paper, we provide analternative proof for the comple...
Let Γ denote a Q-polynomial distance-regular graph with diameter D ≥ 3 and standard module V . Recently Ito and Terwilliger introduced four direct sum decompositions of V ; we call these the (μ, ν)–split decompositions of V , where μ, ν ∈ {↓, ↑}. In this paper we show that the (↓, ↓)–split decomposition and the (↑, ↑)–split decomposition are dual with respect to the standard Hermitian form on V...
Let f! = G/K be a symmetric tube domain where G is the universal cover of Aut(f!). Let X be a line bundle on the Shilov boundary, and let I(x) be the space of sections. This paper determines (a) the composition series for I(x) as a ({1, K)module, (b) the K-module structure of each constituent, (c) explicit formulas for possible invariant Hermitian forms on these constituents, and (d) the unitar...
For a non-Hermitian Hamiltonian H possessing a real spectrum, we introduce a canonical orthonormal basis in which a previously introduced unitary mapping of H to a Hermitian Hamiltonian h takes a simple form. We use this basis to construct the observables Oα of the quantum mechanics based on H. In particular, we introduce pseudo-Hermitian position and momentum operators and a pseudo-Hermitian q...
در این مقاله فرم رد جیکوبسن را به فرمهای هرمیتی پادمتقارن روی جبرهای تقسیم کواترنیون با برگردان متعامد در مشخصهی دلخواه تعمیم میدهیم. با استفاده از این فرم تعمیمیافته، یک ردهبندی از فرمهای هرمیتی مذکور ارائه مینمائیم. همچنین نشان میدهیم یک فرم هرمیتی ایزوتروپ (متابولیک) است اگر و تنها اگر فرم رد جیکوبسن تعمیمیافتهی آن ایزوتروپ (متابولیک) باشد. .
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید