نتایج جستجو برای: maximal n prime of 0
تعداد نتایج: 21396174 فیلتر نتایج به سال:
in this paper the family of elliptic curves over q given by the equation ep :y2 = (x - p)3 + x3 + (x + p)3 where p is a prime number, is studied. itis shown that the maximal rank of the elliptic curves is at most 3 and someconditions under which we have rank(ep(q)) = 0 or rank(ep(q)) = 1 orrank(ep(q))≥2 are given.
The main result of this paper states that if R is a right Noetherian right bounded prime ring such that nonzero prime ideals are maximal and such that every proper homomorphic image of R is a principal right ideal ring then R is right hereditary. In [10, Theorem 8] it is proved that if R is a right bounded prime ring of finite right Goldie dimension such that every proper homomorphic image is a...
Let R be a commutative ring with unity of characteristic r≥0 and G be a locally finite group. For each x and y in the group ring RG define [x,y]=xy-yx and inductively via [x ,_( n+1) y]=[[x ,_( n) y] , y]. In this paper we show that necessary and sufficient conditions for RG to satisfies [x^m(x,y) ,_( n(x,y)) y]=0 is: 1) if r is a power of a prime p, then G is a locally nilpotent group an...
ardy and Littlewood conjectured that every large integer $n$ that is not a square is the sum of a prime and a square. They believed that the number $mathcal{R}(n)$ of such representations for $n = p+m^2$ is asymptotically given by begin{equation*} mathcal{R}(n) sim frac{sqrt{n}}{log n}prod_{p=3}^{infty}left(1-frac{1}{p-1}left(frac{n}{p}right)right), end{equation*} where $p$ is a prime, $m$ is a...
The rings considered in this article are commutative with identity which admit at least two nonzero annihilating ideals. Let $R$ be a ring. Let $mathbb{A}(R)$ denote the set of all annihilating ideals of $R$ and let $mathbb{A}(R)^{*} = mathbb{A}(R)backslash {(0)}$. The annihilating-ideal graph of $R$, denoted by $mathbb{AG}(R)$ is an undirected simple graph whose vertex set is $mathbb{A}(R...
Let p be a prime integer and F the function field in two algebraically independent variables over smaller F0. We prove that if char(F0)=p⩾3 then there exist p2−1 cyclic algebras of degree have no maximal subfield common, char(F0)=0 p2 common.
bserved by many teachers that most of the time, mumbling and searching for their intended words, students complain why they have forgotten the words they have learned in the previous semesters. they ask for some new ways that may help them to recall and apply the learned words more efficiently, since as they declare one of the most important skills in foreign language learning is having a g...
In this paper, various elementary properties of vague rings are obtained. Furthermore, the concepts of vague subring, vague ideal, vague prime ideal and vague maximal ideal are introduced, and the validity of some relevant classical results in these settings are investigated.
Let G be a group. A subset X of G is a set of pairwise noncommuting elements if xy ̸= yx for any two distinct elements x and y in X. If |X| ≥ |Y | for any other set of pairwise non-commuting elements Y in G, then X is said to be a maximal subset of pairwise non-commuting elements. In this paper we determine the cardinality of a maximal subset of pairwise non-commuting elements in any non-abelian...
we discuss whether finiteness properties of a profinite group $g$ can be deduced from the coefficients of the probabilisticzeta function $p_g(s)$. in particular we prove that if $p_g(s)$ is rational and all but finitely many non abelian composition factors of $g$ are isomorphic to $psl(2,p)$ for some prime $p$, then $g$ contains only finitely many maximal subgroups.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید