نتایج جستجو برای: multi objectiveparticle swarm
تعداد نتایج: 485020 فیلتر نتایج به سال:
Particle swarm optimization has been successfully applied in many research and application areas because of its effectiveness and easy implementation. In this work we extend one of its variants to address multi-modal dynamic optimization problems, the multi-swarm PSO (mPSO) proposed by Blackwell and Branke. The aim of our proposal is to increase the efficiency of this algorithm. To this end, we...
Swarm construction involves a population of autonomous agents collaboratively organising material into useful persistent structures without recourse to central co-ordination or control. This approach to fabrication has significant potential within nanoscale domains, where explicit centralised control of building activity is prohibitive (e.g., Martel and Mohammadi, 2010). The ultimate value of s...
The scheduling problem in distributed data-intensive computing environments has become an active research topic due to the tremendous growth in grid and cloud computing environments. As an innovative distributed intelligent paradigm, swarm intelligence provides a novel approach to solving these potentially intractable problems. In this paper, we formulate the scheduling problem for work-flow ap...
This paper presents a novel symbiotic multi-swarm particle swarm optimization (SMPSO) based on our previous proposed multi-swarm cooperative particle swarm optimization. In SMPSO, the population is divided into several identical sub-swarms and a center communication strategy is used to transfer the information among all the sub-swarms. The information sharing among all the sub-swarms can help t...
Vector evaluated particle swarm optimization (VEPSO) is a multi-swarm variant of the traditional particle swarm optimization (PSO) algorithm applied to multi-objective problems (MOPs). Each subobjective is allocated a single sub-swarm and knowledge transfer strategies (KTSs) are used to pass information between swarms. The original VEPSO used a ring KTS, and while VEPSO has shown to be successf...
Swarm intelligence theory is proposed for motion planning of multi-robot systems. Multiple particles start from different points in the solutions space and interact to each other while moving towards the goal position. Swarm intelligence theory is a derivative-free approach to the problem of multi-robotcooperation which works by searching iteratively in regions defined by each robot’s best prev...
Error Correcting Output Codes reveal an efficient strategy in dealing with multi-class classification problems. According to this technique, a multi-class problem is decomposed into several binary ones. On these created sub-problems we apply binary classifiers and then, by combining the acquired solutions, we are able to solve the initial multiclass problem. In this paper we consider the optimi...
The proposed algorithm in this research is based on the multi-agent particle swarm optimization as a collective intelligence due to the connection between several simple components which enables them to regulate their behavior and relationships with the rest of the group according to certain rules. As a result, self-organizing in collective activities can be seen. Community structure is crucial...
The fast convergence of particle swarm algorithms can become a downside in multi-objective optimization problems when there are many local optimal fronts. In such a situation a multi-objective particle swarm algorithm may get stuck to a local Pareto optimal front. In this paper we propose a new approach in selecting leaders for the particles to follow, which in-turn will guide the algorithm tow...
In order to improve and accelerate the speed of image integration, an optimal and intelligent method for multi-focus image fusion is presented in this paper. Based on particle swarm optimization and quantum theory, quantum particle swarm optimization (QPSO) intelligent search strategy is introduced in salience analysis of a contrast visual masking system, combined with the segmentation techniqu...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید