نتایج جستجو برای: recurrent fuzzy
تعداد نتایج: 217386 فیلتر نتایج به سال:
The paper presents a comparison of various soft computing techniques used for filtering and enhancing speech signals. The three major techniques that fall under soft computing are neural networks, fuzzy systems and genetic algorithms. Other hybrid techniques such as neuro-fuzzy systems are also available. In general, soft computing techniques have been experimentally observed to give far superi...
In this study, an image backlight compensation method using adaptive luminance modification is proposed for efficiently obtaining clear images.The proposed method combines the fuzzy C-means clustering method, a recurrent functional neural fuzzy network (RFNFN), and a modified differential evolution.The proposed RFNFN is based on the two backlight factors that can accurately detect the compensat...
A method for response integration in modular neural networks with type-2 fuzzy logic for biometric systems p. 5 Evolving type-2 fuzzy logic controllers for autonomous mobile robots p. 16 Adaptive type-2 fuzzy logic for intelligent home environment p. 26 Interval type-1 non-singleton type-2 TSK fuzzy logic systems using the hybrid training method RLS-BP p. 36 An efficient computational method to...
In this paper, an output based adaptive iterative learning controller using an output recurrent fuzzy neural network is proposed for a class of uncertain nonaffine nonlinear systems. It is assumed that the states are not measurable. Without state observer, a sliding window of measurement is introduced to design the iterative learning controller. The main structure of this controller is construc...
In this paper, a recurrent compensatory neuro-fuzzy system (RCNFS) for identification and prediction is proposed. The compensatory-based fuzzy method uses the adaptive fuzzy operations of neuro-fuzzy systems to make fuzzy logic systems more adaptive and effective. A recurrent network is embedded in the RCNFS by adding feedback connections in the second layer, where the feedback units act as mem...
In this paper, we compare the inference capabilities of three different types of Fuzzy Cognitive Maps. A Fuzzy Cognitive Map is a Recurrent Artificial Neural Network that creates models as collections of concepts/neurons and the various causal relations that exist between these concepts/neurons. The three different types of Fuzzy Cognitive Maps that we study are the Binary, the Trivalent and th...
Neural and neuro-fuzzy models are powerful nonlinear modelling tools. Different structures, with different properties, are widely used to capture static or dynamical nonlinear mappings. Static (non-recurrent) models share a common structure: a nonlinear stage, followed by a linear mapping. In this paper, the separability of linear and nonlinear parameters is exploited for completely supervised ...
A Recurrent Trainable Neural Network (RTNN) with a two layer canonical architecture and a dynamic Backpropagation learning method are applied for local identification and local control of complex nonlinear plants. The RTNN model is incorporated in Hierarchical Fuzzy-Neural Multi-Model (HFNMM) architecture, combining the fuzzy model flexibility with the learning abilities of the RTNNs. A direct ...
We present a fuzzy decision support system that can be used in traffic control centers to provide a limited list of appropriate combinations of traffic control measures for a given traffic situation. The system we describe is part of a larger traffic decision support system that can assist the operators of traffic control centers when they have to reduce non-recurrent congestion using a network...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید