نتایج جستجو برای: توابع احاطه گر رنگین کمانی
تعداد نتایج: 20873 فیلتر نتایج به سال:
در این پایان نامه به بررسی خانواده ای از پارامترها که مدل کسری برخی پارامترهای دیگر در نظریه گراف هستند، می پردازیم. پارامترهای اصلی در حالت کلی به فرم: مینیمم-ماکسیمم کاردینالیتی یک مجموعه مینیمال-ماکسیمال از رئوس گراف هستند، بطوریکه مجموع وزن رئوسی که به همسایگی هر رأس نسبت می د هیم حداکثر-حداقل یک می باشد. پارامترهایی که در این پایان نامه بررسی می کنیم شامل مدل کسری احاطه ای، احاطه ای تام،...
فرض کنید g یک گروه و a مجموعه مولدی برای g باشد به طوری که a شامل عضو همانی g نبوده و نسبت به وارون بسته باشد، گراف کیلی روی گروه g نسبت بهa گرافی است با مجموعه رئوس g و مجموعه یال های{ e={(x , xa)| x ? g a ? a آن را با( cay (g , a نشان می دهند. در حالت خاص اگر g گروه جمعی zn به پیمانه n باشد، گراف کیلی را یک گراف دوری می نامند وآن را با( cir (n , a نشان می دهند. یک زیر مجموعه از مجموعه رئوس گر...
فرض کنیم $m$ یک عدد طبیعی، $ mathbb{z}_{m} $ حلقه ی رده های مانده ای به پیمانه ی $ m $ و $ u(mathbb{z}_{m}) $ گروه اعضای وارون پذیر آن باشد. برای عدد صحیح مثبت $ u$، $mathbb{ z}_{m}^{(2 u)} $ را مجموعه ی همه ی $ 2 u $-تایی های $ (a_{1},ldots ,a_{2 u} ) $ از اعضای $mathbb{ z}_{m} $ درنظر می گیریم به طوری که $a_{1}mathbb{z}_{m}+a_{2}mathbb{z}_{m}+cdots +a_{2 u}ma...
بدست اوردن مجموعه های احاطع کننده های موضعی در گرافها وبدست اوردن مینیمم انمدازه ان در چند گراف خاص
بازی احاطه ای بر روی گراف های ساده ی بدون جهت توسط دو بازیکن $mathcal d$ و $mathcal a$ انجام می شود. هر یک از این بازیکنان در نوبت بازی خود یک یال بدون جهت را انتخاب و آن را جهت گذاری می کنند. بازی را بازیکن $mathcal d$ شروع می کند و در جهت گذاری یال ها به دنبال کاهش عدد احاطه ای گراف جهت داری است که در انتهای بازی به دست خواهد آمد، در حالی که بازیکن $mathcal a$ به دنبال افزایش این عد...
فرض کنید u و v دو رأس از گراف g باشند به طوری که با فاصله دو از یکدیگر قرار گرفته باشند وx همسایگی مشترک u و v باشد منظور از یک بالابری در گراف g حذف یا ل های ux و xv و اضافه کردن یال uv می باشد. در فصل اول مفاهیم و مقدمات اولیه گراف که در فصل بعد به آن نیازمندیم را یادآوری می کنیم. در فصل دوم تاثیر بالابریالی روی عدد احاطه گری در گراف ها را به طور کامل بررسی می کنیم. در فصل سوم تاثیرات بالا...
در این پایانامه کرانهای بالا و پایین برای عدد k-احاطه ای ارایه میکنیم.
احاطه کننده یکی از مفاهیم بنیادین در نظریه گراف است که دارای کاربردهای مختلف در شبکه های تک کاره و بی سیم، شبکه های بیولوژیکی، محاسبات توزیع شده، شبکه های اجتماعی و گراف های وب می باشد. مجموعه های احاطه کننده همچنین به عنوان مدل هایی برای تسهیلات مساله های موقعیت (تعیین محل) در پژوهش عملیاتی استفاده می شوند. از جمله کاربردهایی که برای این مفهوم می توان نام برد، استفاده از آن در شبکه های ارتباطی...
ماتریس حقیقی a را تصادفی دوگانه ی زوج گوییم، هرگاه ترکیب محدبی از ماتریس های جایگشت زوج باشد. برای ماتریس های a,b، گوییم a توسط b احاطه سازی زوج می شود، هرگاه ماتریس تصادفی دوگانه زوج d موجود باشد به طوری که a=db. همچنین ماتریس تصادفی دوگانه دوار b ترکیب محدبی از ماتریس های جایگشت دوار می باشد. برای بردارهای x,y، گوییم x توسط y احاطه سازی دوار می شود، هرگاه ماتریس تصادفی دوگانه دوار d موجود باش...
در این پایان نامه به بررسی مفهوم عدد احاطه گری علامت دار در گراف ها می پردازیم. اگر به هر راس گراف وزن ? یا ?- اختصاص می دهیم به طوری که هر راس v از گراف? مجموع وزن همسایه هایش و وزن خود راس v بزرگتر یا مساوی ? باشد. عدد احاطه گری علامت دار? ?_(s(g))?کمترین مقدار مجموع وزن راس های گراف است به طوری که برای هر راس شرایط احاطه گری علامت داربرقرار باشد. برای عدد احاطه گری علامت دار? کران هایی به ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید