نتایج جستجو برای: degree based topological index
تعداد نتایج: 3491317 فیلتر نتایج به سال:
Let G be a graph and let mij(G), i, j ≥ 1, be the number of edges uv of G such that {dv(G), du(G)} = {i, j}. TheM -polynomial ofG is introduced withM(G;x, y) = ∑ i≤j mij(G)x y . It is shown that degree-based topological indices can be routinely computed from the polynomial, thus reducing the problem of their determination in each particular case to the single problem of determining the M -polyn...
In this paper, the Urysohn, completely Hausdorff and completely regular axioms in $L$-topological spaces are generalized to $L$-fuzzy topological spaces. Each $L$-fuzzy topological space can be regarded to be Urysohn, completely Hausdorff and completely regular tosome degree. Some properties of them are investigated. The relations among them and $T_2$ in $L$-fuzzy topological spaces are discussed.
We define a notion of topological degree for a class of maps (called orientable), defined between real Banach spaces, which are Fredholm of index zero. We introduce first a notion of orientation for any linear Fredholm operator of index zero between two real vector spaces. This notion (which does not require any topological structure) allows to define a concept of orientability for nonlinear Fr...
Throughout the paper, an analytic field means a non-archimedean complete real-valued field, and our main objective is to extend basic theory of transcendental extensions these fields. One easily introduces topological analogue transcendence degree, but, surprisingly, it turns out that may behave very badly. For example, particular case theorem Matignon-Reversat, [8, Thèoréme 2] , asserts if cha...
The Narumi-Katayama index was the first topological index defined by the product of some graph theoretical quantities. Let $G$ be a simple graph with vertex set $V = {v_1,ldots, v_n }$ and $d(v)$ be the degree of vertex $v$ in the graph $G$. The Narumi-Katayama index is defined as $NK(G) = prod_{vin V}d(v)$. In this paper, the Narumi-Katayama index is generalized using a $n$-ve...
For a graph G, let σ(G) = ∑ uv∈E(G) 1 √ dG(u)+dG(v) ; this defines the sum-connectivity index σ(G). More generally, given a positive function t, the edge-weight t-index t(G) is given by t(G) = ∑ uv∈E(G) t(ω(uv)), where ω(uv) = dG(u) + dG(v). We consider extremal problems for the t-index over various families of graphs. The sum-connectivity index satisfies the conditions imposed on t in each ext...
The Wiener index of a connected graph is the sum of topological distances between all pairs of vertices. Since Wang in [23] gave a mistake result on the maximum Wiener index for given tree degree sequence, in this paper, we investigate the maximum Wiener index of trees with given degree sequences and extremal trees which attain the maximum value.
a novel topological descriptor based on the expanded wiener index: applications to qspr/qsar studies
in this paper, a novel topological index, named m-index, is introduced based on expanded form of the wiener matrix. for constructing this index the atomic characteristics and the interaction of the vertices in a molecule are taken into account. the usefulness of the m-index is demonstrated by several qspr/qsar models for different physico-chemical properties and biological activities of a large...
Among topological descriptors connectivity topological indices are very important and they have a prominent role in chemistry. One of them is atom-bond connectivity (ABC) index defined as ABC(G)= [formula:see text], in which degree of vertex v denoted by dv . Recently, a new version of atom-bond connectivity (ABC4) index was introduced by M. Ghorbani et.al in 2010 and is defined as ABC4(G)= [fo...
In this paper, we extend the recently introduced vertex-degree-based topological index, Sombor and call it general index. The index generalizes both forgotten We present bounds in terms of other important graph parameters for also explore Nordhaus–Gaddum-type result further relations between generalized indices: Randić sum-connectivity
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید