نتایج جستجو برای: fuzzy system modeling
تعداد نتایج: 2576824 فیلتر نتایج به سال:
The inverted pendulum is a highly nonlinear and open loop unstable system. To develop an accurate model of the inverted pendulum, different linear and nonlinear methods of identification will be used. However one of the problems encountered during modeling is the collection of experimental data from the inverted pendulum system. Since the output data from the unstable system does not show enoug...
Fuzzy logic has been a useful tool for modeling complex problems, with the use of fuzzy variables and fuzzy rules, and in this paper we use a fuzzy system for parameter adaptation in the Ant Colony Optimization (ACO metaheuristic). In this case we perform the dynamic adaptation of Alpha and Rho parameters; this is to control the abilities of ACO to perform a global and local search. Simulation ...
In complex multidimensional problems with a highly nonlinear input-output relation, inconsistent or redundant rules can be found in the fuzzy model rule base, which can result in a loss of accuracy and interpretability. Moreover, the rules could not cooperate in the best possible way. It is known that the use of rule weights as a local tuning of linguistic rules, enables the linguistic fuzzy mo...
We discuss the role of fuzzy sets in modeling business rules. The technology involved in fuzzy systems modeling is described. We next introduce some ideas from the Dempster-Shafer theory of evidence. We use the Dempster-Shafer framework to provide a machinery for including randomness in the fuzzy systems
In this study, we offer a general view at the area of fuzzy modeling and fuzzymodels, identify the visible development phases and elaborate on a new and promisingdirections of system modeling by introducing a concept of granular models. Granularmodels, especially granular fuzzy models constitute an important generalization of existingfuzzy models and, in contrast to the existing models, generat...
in this study, several data-driven techniques including system identification, adaptive neuro-fuzzy inference system (anfis), artificial neural network (ann) and wavelet-artificial neural network (wavelet-ann) models were applied to model rainfall-runoff (rr) relationship. for this purpose, the daily stream flow time series of hydrometric station of hajighoshan on gorgan river and the daily rai...
The survey and modeling of the deformations of large structures is a major task in engineering geodesy. In this paper, a new procedure to describe and predict the deformations is presented and discussed which is based on Neuro-Fuzzy modeling. Neuro-Fuzzy methods are data driven; they deduce the model directly from the data. Hence, they are mostly convenient if there are no physical models avail...
Fuzzy modeling has great adaptability to the variations of system configuration and operation conditions. This paper investigates the fuzzy modeling of a laboratory scale system of anaerobic tapered fluidized bed reactor (ATFBR). The studied system is the anaerobic digestion of synthetic wastewater derived from the starch processing industries. The experiment was carried out in a mesophilic ATF...
In this paper, a new architecture combining dynamic neural units and fuzzy logic approaches is proposed for a complex chemical process modeling. Such processes need a particular care where the designer constructs the neural network, the fuzzy and the fuzzy neural network models which are very useful in black box modeling. The proposed architecture is specified to the pH chemical reactor due to ...
Neuro-Fuzzy Modeling has been applied in a wide variety of fields such as Decision Making, Engineering and Management Sciences etc. In particular, applications of this Modeling technique in Decision Making by involving complex Systems of Linear Algebraic Equations have remarkable significance. In this Paper, we present Polak-Ribiere Conjugate Gradient based Neural Network with Fuzzy rules to so...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید