نتایج جستجو برای: outer independent roman domination

تعداد نتایج: 528652  

2011
M. H. Akhbari Ch. Eslahchi N. Jafari Rad R. Hasni

A subset S of the vertices of a graph G is an outer-connected dominating set, if S is a dominating set of G and G − S is connected. The outer-connected domination number of G, denoted by γ̃c(G), is the minimum cardinality of an OCDS of G. In this paper we generalize the outer-connected domination in graphs. Many of the known results and bounds of outer-connected domination number are immediate c...

2011
Marcin Krzywkowski

A 2-outer-independent dominating set of a graph G is a set D of vertices of G such that every vertex of V (G)\D has a at least two neighbors in D, and the set V (G) \D is independent. The 2-outer-independent domination number of a graph G, denoted by γ 2 (G), is the minimum cardinality of a 2-outer-independent dominating set of G. We prove that for every nontrivial tree T of order n with l leav...

Journal: :Australasian J. Combinatorics 2012
Nader Jafari Rad Chun-Hung Liu

A Roman dominating function (RDF) on a graph G = (V,E) is a function f : V → {0, 1, 2} satisfying the condition that every vertex u for which f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2. The weight of an RDF f is the value f(V (G)) = ∑ u∈V (G) f(u). A function f : V (G) → {0, 1, 2} with the ordered partition (V0, V1, V2) of V (G), where Vi = {v ∈ V (G) | f(v) = i} for i = 0...

2012
Marcin Krzywkowski

A total outer-independent dominating set of a graph G = (V (G), E(G)) is a set D of vertices of G such that every vertex of G has a neighbor in D, and the set V (G) \D is independent. The total outer-independent domination number of a graph G, denoted by γ t (G), is the minimum cardinality of a total outer-independent dominating set of G. We prove that for every tree T of order n ≥ 4, with l le...

Journal: :AKCE International Journal of Graphs and Combinatorics 2020

Journal: :Inf. Process. Lett. 2013
Yunjian Wu

Let γ(G) denote the domination number of a graph G. A Roman domination function of a graph G is a function f : V → {0, 1, 2} such that every vertex with 0 has a neighbor with 2. The Roman domination number γR(G) is the minimum of f(V (G)) = Σv∈V f(v) over all such functions. Let G H denote the Cartesian product of graphs G and H. We prove that γ(G)γ(H) ≤ γR(G H) for all simple graphs G and H, w...

Journal: :communication in combinatorics and optimization 0
nasrin dehgardi sirjan university of technology, sirjan 78137, iran lutz volkmann lehrstuhl ii fur mathematik, rwth aachen university, 52056 aachen, germany

let $d$ be a finite and simple digraph with vertex set $v(d)$‎.‎a signed total roman $k$-dominating function (str$k$df) on‎‎$d$ is a function $f:v(d)rightarrow{-1‎, ‎1‎, ‎2}$ satisfying the conditions‎‎that (i) $sum_{xin n^{-}(v)}f(x)ge k$ for each‎‎$vin v(d)$‎, ‎where $n^{-}(v)$ consists of all vertices of $d$ from‎‎which arcs go into $v$‎, ‎and (ii) every vertex $u$ for which‎‎$f(u)=-1$ has a...

Let $G$ be a simple graph with vertex set $V$. A double Roman dominating function (DRDF) on $G$ is a function $f:Vrightarrow{0,1,2,3}$ satisfying that if $f(v)=0$, then the vertex $v$ must be adjacent to at least two vertices assigned $2$ or one vertex assigned $3$ under $f$, whereas if $f(v)=1$, then the vertex $v$ must be adjacent to at least one vertex assigned $2$ or $3$. The weight of a DR...

A {em Roman dominating function} on a graph $G$ is a function $f:V(G)rightarrow {0,1,2}$ satisfying the condition that every vertex $u$ for which $f(u)=0$ is adjacent to at least one vertex $v$ for which $f(v)=2$. A {em total Roman dominating function} is a Roman dominating function with the additional property that the subgraph of $G$ induced by the set of all vertices of positive weight has n...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید