نتایج جستجو برای: stochastic fuzzy recurrent neural networks

تعداد نتایج: 936963  

Journal: :پژوهش های مدیریت در ایران 0
عادل آذر دانشیار رشته مدیریت، دانشگاه تربیت مدرس، تهران، ایران امیر افسر مربی مدیریت، دانشگاه قم، قم، ایران پرویز احمدی استادیار مدیریت، دانشگاه تربیت مدرس، تهران، ایران

today, stock investment has become an important mean of national finance. apparently, it is significant for investors to estimate the stock price and select the trading chance accurately in advance, which will bring high return to stockholders. in the past, long-term trading processes and many technical analysis methods for stock market were put forward. however, stock market is a nonlinear sys...

Journal: :iranian journal of fuzzy systems 0
sheng-chih yang department of computer science and information engineering, national chin-yi university of technology, taichung city 411, taiwan, roc cheng-jian lin department of computer science and information engineering, national chin-yi university of technology, taichung city 411, taiwan, roc hsueh-yi lin department of computer science and information engineering, national chin-yi university of technology, taichung city 411, taiwan, roc jyun-guo wang department of computer science and information engineering, national chin-yi university of technology, taichung city 411, taiwan, roc cheng-yi yu department of computer science and information engineering, national chin-yi university of technology, taichung city 411, taiwan, roc

in this study, an image backlight compensation method using adaptive luminance modification is proposed for efficiently obtaining clear images.the proposed method combines the fuzzy c-means clustering method, a recurrent functional neural fuzzy network (rfnfn), and a modified differential evolution.the proposed rfnfn is based on the two backlight factors that can accurately detect the compensat...

2007
N. Moodley S. H. Mneney

This paper explores the use of recurrent neural networks for sub-optimal detection in code division multiple access systems. Research has shown that detectors based on the Hopfield recurrent neural network suffer from localized optimization. The basic Hopfield model is reviewed and we illustrate its use as a multiuser receiver. We investigate the use of stochastic methods to achieve a global mi...

Journal: :CoRR 2003
Muhammad Riaz Khan Ajith Abraham

This paper presents a comparative study of six soft computing models namely multilayer perceptron networks, Elman recurrent neural network, radial basis function network, Hopfield model, fuzzy inference system and hybrid fuzzy neural network for the hourly electricity demand forecast of Czech Republic. The soft computing models were trained and tested using the actual hourly load data obtained ...

Journal: :journal of medical signals and sensors 0
monire sheikh hosseini maryam zekri

image classification is an issue which utilizes image processing, pattern recognition and classification methods. automatic medical image classification is a progressive area in image classification and it expected to be more developed in the future. due to this fact that automatic diagnosis which use intelligent methods such as medical image classification can assist pathologists by providing ...

امامقلی زاده, صمد, اکبرزاده, فرزانه, حسن پور, حمید,

     Groundwater level prediction is an important issue in scheduling and managing water resources. A number of approaches such as stochastic, fuzzy networks and artificial neural network have been used for such prediction. A neural network model has been employed in this research for Shahrood plain groundwater level prediction. For this reason, statistical parameters of groundwater level fluct...

K. Meenakshi M. Syed Ali M. Usha N. Gunasekaran

This paper focuses on the problem of finite-time boundedness and finite-time passivity of discrete-time T-S fuzzy neural networks with time-varying delays. A suitable Lyapunov--Krasovskii functional(LKF) is established to derive sufficient condition for finite-time passivity of discrete-time T-S fuzzy neural networks. The dynamical system is transformed into a T-S fuzzy model with uncertain par...

2005
Rahib Hidayat Abiyev

This paper presents the development of recurrent neural network based fuzzy inference system for identification and control of dynamic nonlinear plant. The structure and algorithms of fuzzy system based on recurrent neural network are described. To train unknown parameters of the system the supervised learning algorithm is used. As a result of learning, the rules of neuro-fuzzy system are forme...

2006
Paris A. Mastorocostas Dimitris N. Varsamis Constantinos A. Mastorocostas

The RPROP algorithm was originally developed in [5] for static networks and constitutes one of the best performing first order learning methods for neural networks [6]. However, in RPROP the problem of poor convergence to local minima, faced by all gradient descent-based methods, is not fully eliminated. Hence, in an attempt to alleviate this drawback, a combination of RPROP with the global sea...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید