نتایج جستجو برای: systems of nonlinear volterra integro differential equations
تعداد نتایج: 21331248 فیلتر نتایج به سال:
In this paper, we employed the use of Standard Integral Collocation Approximation Method to obtain numerical solutions of special higher orders linear Fredholm-Volterra Integro-Differential Equations. Power Series, Chebyshev and Legendre's Polynomials forms of approximations are used as basis functions. From the computational view points, the method is efficient, convenient, reliable and superi...
Abstract. In this study we developed and modified Taylor expansion method for approximating the solution of linear Fredholm and Volterra integro-differential equations. Via Taylor’s expansion of the unknown function at an arbitrary point, the integro-differential equations to be solved is approximately transformed into a system of linear equations for the unknown and its derivatives which can b...
We consider the numerical solution of real time equilibrium Dyson equation, which is used in calculations dynamical properties quantum many-body systems. show that this equation can be written as a system coupled, nonlinear, convolutional Volterra integro-differential equations, for kernel depends self-consistently on solution. As typical Volterra-type computational bottleneck quadratic-scaling...
This paper is concerned with obtaining the approximate solution of Fredholm-Volterra integro-differential equations. Properties of the Shannon wavelets and connection coefficients are first presented. We design a numerical scheme for these equations using the Galerkin method incorporated with the Shannon wavelets approximation and the connection coefficients. We will show that using this techni...
In this paper, a fuzzy numerical procedure for solving fuzzy linear Volterra integro-differential equations of the second kind under strong generalized differentiability is designed. Unlike the existing numerical methods, we do not replace the original fuzzy equation by a $2times 2$ system ofcrisp equations, that is the main difference between our method and other numerical methods.Error ana...
Integro-differential equations involving Volterra and Fredholm operators (VFIDEs) are used to model many phenomena in science engineering. Nonlocal boundary conditions more effective, some cases necessary, because they accurate measurements of the true state than classical (local) initial conditions. Closed-form solutions always desirable, not only efficient, but also can be valuable benchmarks...
This paper establishes a study on some important latest innovations in the uniqueness of solution for Caputo fractional Volterra-Fredholm integro-differential equations. To apply this, the study uses Banach contraction principle and Bihari's inequality. A wider applicability of these techniques are based on their reliability and reduction in the size of the mathematical work.
Recently, there has been an increasing interest in the study of singular and perturbed systems. In this paper we propose a collocation method for solving singularly perturbed Volterra integro-differential and Volterra integral equations. The method is based upon radial basis functions, using zeros of the shifted Legendre polynomial as the collocation points. The results of numerical experiments...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید