نتایج جستجو برای: فضای متریک برداری مقدار
تعداد نتایج: 113931 فیلتر نتایج به سال:
این رساله در سه فصل به شرح زیر تنظیم گردیده است. فصل اول دربردارنده نتایج اصلی این رساله در مورد نقطه ثابت نگاشت های چندمقداری تعریف شده روی فضاهای متریک برداری مقدار می باشد. این فصل شامل سه بخش است: در بخش اول مفاهیم و قضایای مقدماتی مورد نیاز در بخش های بعد، ارائه می شود. در بخش دوم برخی قضایای معروف نقطه ثابت برای نگاشت های تک مقداری را معرفی می کنیم. سپس با اثبات قضایایی برای ...
از آنجا که روابط ترتیبی بر صفحه مختلط قابل بیان نیست در این پایان نامه ابتدا با تعریف یک رابطه ترتیب جزئی روی صفحه مختلط و سپس با معرفی یک متر مختلط مقدار فضای متریک مختلط مقدار را توصیف میکنیم با بهبود شرایط انقباضی و با معرفی نگاشت های سازگار نظریه نقطه ثابت را بر فضای متریک مختلط مقدار تعمیم میدهیم سپس فضای جدید b-متریک را تعریف کرده و یک قضییه اساسی نقطه ثابت مشترک برای بک جفت نگاشت سازگار ...
در این پایان نامه ابتدا فضاهای متریک مخروطی، نوعی متریک و متریک مختلط مقدار را معرفی و خواص مربوط به هر یک از آن ها را بررسی می نماییم. سپس با ارزیابی و تعمیم شرط انقباضی باناخ بر فضاهای فوق، زمینه را برای اثبات و تعمیم قضیه نقطه ثابت بر آن ها فراهم می سازیم.
در این رساله ابتدا به بررسی قضایای نقطه ثابت برای نگاشت های ضعیف سازگار در فضاهای نوع متریک و نوع متریک مخروطی بدون نیاز به پیوستگی نگاشت ها می پردازیم. در ادامه، قضایای نقطه ثابت دوتایی و چهارتایی را برای نگاشت های ضعیف سازگار بیان و اثبات می کنیم. سپس وجود نقاط ثابت و نقاط ثابت سه تایی را برای -tانقباض ها در فضای متریک مخروطی بررسی می کنیم. در این قسمت برای تضمین کاربردی بودن نتایج، مسائلی ...
در این پایان نامه، به بررسی مفهوم فضاهای متریک مخروطی جبری می پردازیم و ویژگی های مهمی از آن ها را می آوریم. هم چنین مفاهیم متر مخروطی و نرم مخروطی و خواص آن ها را به تفصیل بررسی می کنیم. فضاهای متریک مخروطی جبری از دیدگاه نظری بسیار مشابه فضاهای متریک معمولی هستند، با این تفاوت که مقادیر متر آن ها در یک فضای باناخ مرتب قرار می گیرد. از این نظر، فضاهای متریک مخروطی جبری تعمیم گسترده ای از فضاه...
فضای متریک مخروطی تعمیمی از فضای متریک معمولی می باشد که در قرن بیستم معرفی شده است. تا کنون قضایای نقطه ثابت و نقطه ثابت مشترک متعددی در فضای متریک مخروطی اثبات و ارائه شده است. در این پایان نامه با جایگزین کردن فضای برداری توپولوژیک به جای فضای باناخ حقیقی در مجموعه مقدار متر مخروطی, تعمیمی از فضای متریک مخروطی را بیان می کنیم که با عنوان فضای متریک مخروطی برداری توپولوژیک معرفی گردیده...
در این پایان نامه ضمن تعریف فضاهای متریک به طور یکنواخت محدب به بررسی نقاط ثابت نگاشت های مجموعه مقدار در این نوع فضاهامی پردازیمو همچنین همگرایی اسکیم های ایشیکاوا و مان را برای نگاشت های نامنبسط در این فضاها می پردازیم
نظریه نقطه ثابت برای انقباض های مجموعه – مقدار توسط نادلر آغاز شد. این نظریه سپس توسط ریاضی دانان بسیاری بسط و گسترش یافت. در این پایان نامه مفهوم انقباض های مجموعه – مقدار در فضاهای متریک معرفی می شود و به بررسی شرایطی می پردازیم که لزوم وجود یک نقطه ثابت را برای چنین نگاشت هایی تضمین می کند.
در این مقاله یک مدل ریاضی برای مسئله سیستم تولیدی همکارانه ساخت بر اساس سفارش با رعایت انصاف تخصیص بارهای تولید طراحی شده است. اهداف اصلی مدل، کمینهسازی هزینههای کل و حداکثر استفاده از منابع بهمنظور عادلانه شرایط عدمقطعیت کنترل پارامترهای غیرقطعی روش برنامهریزی فازی شده نتایج نشان میدهد افزایش نرخ عدمقطعیت، مییابد. ازآنجاکه ظرفیت کارخانهها ثابت است، مقدار تقاضا، هر کارخانه نیز میی...
فضاهای متریک مخروطی با جایگزین کردن مجموعه اعداد حقیقی با یک فضای باناخ مطرح و قضایای بسیاری در مورد آن ثابت شده است. به عنوان تعمیمی از فضاهای متریک مخروطی، توسط برخی نویسندگان فضای باناخ فوق الذکر با یک فضای توپولوژیک برداری جابه جا شده است. با این تعمیم طیف گسترده تری از فضاهای مخروطی به دست می آید. در این پایان نامه به مطالعه این نوع فضاهای مخروطی پرداخته شده و چندین مقاله جدید در این خصوص ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید