نتایج جستجو برای: ماتریس جایگشتی دوری

تعداد نتایج: 11935  

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه شهرکرد - دانشکده ریاضی 1393

در سال های اخیر ساخت کدهای شبه دوری خلوت با کمر بزرگ مورد توجه بسیاری از محققان بوده است. اگرچه بیشتر این پژوهش ها روی گراف های بدوی با یال های ساده انجام شده و تعداد کمی از تحقیقات برای ساخت کدهای شبه دوری خلوت به دست آمده از گراف های بدوی غیرساده انجام شده است. تحقیقات نشان داده که گراف های بدوی غیرساده از گراف های بدوی ساده کارایی بهتری دارند، به طوری که کدهای شبه دوری خلوت به دست آمده از آن...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی اصفهان - دانشکده علوم ریاضی 1391

کــدهای ldpc به عنوان یک کـلاس از کـــدهای بلوکی خطی در سال ???? توسط گالاگر کشف و معرفی شدند. این کلاس از کدها با توجه به قابلیت تصحیح خطای بالایی که دارند، کارایی و عملکرد مناسبی نسبت به کدهای دیگر دارند و از این جهت بسیار حائز اهمیت می باشند. در این پایان نامه، ساختار کدهای شبه دوری ldpc را معرفی کرده و چند شیوهُ ساخت این کلاس از کدها را معرفی، و نشان می دهیم که گراف تنر متناظر به کدهای تولید...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه اراک - دانشکده علوم پایه 1393

در این پایان نامه به مطالعه ی ماترس دوری می پردازیم ومسئله ی نزدیکترین ماتریس همبستگی به یک ماتریس دوری متقارن را مورد بحث قرار می دهیم که مهمترین بحث این پایان نامه می باشد.

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه یزد - دانشکده ریاضی 1393

مسائل مقدار ویژه، به دو دسته تقسیم می شوند: مسائل مقدار ویژه مستقیم درجه دوم و مسائل مقدار ویژه معکوس درجه دوم. مسئله مستقیم، زمانی که ماتریس ضرایب، داده شده باشد به دنبال یافتن مقادیر ویژه و بردارهای ویژه است. برعکس، مسئله معکوس با داشتن اطلاعات ویژه ای از مقادیر ویژه و بردارهای ویژه، ضرایب ماتریسی را بازسازی می کند. این پایان نامه به یافتن جواب های مسئله مقدار ویژه معکوس درجه دوم اختصاص دارد...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه شهرکرد - دانشکده ریاضی 1393

کدهای خلوت دسته ای از کدهای بلوکی خطی هستند که علی رغم داشتن یک ساختار ساده‏، عملکردی نزدیک به نرخ شانون دارند. ‏اخیراً کدهای خلوت شبه دوری‎‏،‎‎ به عنوان دسته ای خاص از کدهای خلوت‎‏، به علت سهولت در پیاده سازی و هم چنین عملکرد عالی روی کانال های نویزدار‏، پرکاربردترین دسته از کدهای خطی محسوب می شوند و بدین ترتیب توجه زیادی را به خود جلب کرده اند. هر کد خلوت را می توان با یک گراف دوبخشی به نام گر...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه تربیت دبیر شهید رجایی - دانشکده علوم پایه 1392

فرض کنید c‎ یک کد خطی باشد و دوگان آن را در نظر بگیرید، در این صورت غلاف کد ‎c‎ عبارت است از اشتراک کد و دوگانش را غلاف کد می نامیم.‎ غلاف کدهای حاصل از ماتریس وقوعی گراف های همبند منظم بررسی شده است . غلاف کدهای حاصل از ماتریس وقوعی گراف های همبند منظم روی میدان f‎، به ازای هر عدد اول دلخواه p‎ که p عدد مشخصه میدان است بررسی شده است و بعد غلاف بر حسب بعد فضای سطری ماتریس ‎a+ki‎ روی میدان f، ...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی اصفهان - دانشکده ریاضی 1393

گراف ?‎ را یک گراف دو-کیلی روی گروه ‎ gگوییم هرگاه زیرگروهی از ‎ aut(?)‎ یکریخت با ‎g‎ وجود داشته باشد که روی مجموعه ی رئوس ‎ ?به طور نیمه منظم عمل کند و دارای 2 مدار هم اندازه باشد. هر گراف دو-کیلی را می توان به صورت زیر نیز توصیف کرد: فرض کنید ‎$t$‎، ‎$s$‎، و ‎$r$‎ زیر مجموعه هایی از گروه ‎$ g $‎ باشند به طوری که ‎$ s^{-1}=s $‎ و ‎$ r^{-1}=r $‎ و ‎$ rcup s $‎ شامل عضو همانی ‎$ g $‎ نباشد،...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه رازی - دانشکده علوم 1390

در این پایان نامه ابتدا به معرفی کدهای دوری پایا پرداخته شده است و در ادامه به بررسی نوع خاصی از این کدها برروی میدان ویژه ای پرداخته شده است.

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه شهرکرد - دانشکده ریاضی 1392

در این پایان نامه روشی کارا برای شمارش تعداد دورهای کوتاه در گراف بدوی کدهای شبه دوری خلوت ارائه می دهیم.این روش که مبتنی بر رابطه ی بین تعداد دور های کوتاه در گراف و مقادیر ویژه ماتریس وقوع است را بیان میکنیم.در این روش به منظور کاهش پیچیدگی محاسبه مقادیر ویژه ماتریس وقوع از ویژگی های ماتریس دوری بلوکی استفاده می کنیم.نتایج بدست آمده نشان می دهد پیچیدگی محاسبات در این روش نسبت به روش های موجود...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه ولی عصر (عج) - رفسنجان - دانشکده علوم ریاضی 1393

در این پایان نامه، ما ماتریس های دوار و بعضی از خواص آن را مورد بررسی قرار نشان circn(a) را با a روی مجموعه n n می دهیم. فضای ماتریس های دوار می دهیم و نرمال ساز و مرکز ساز آن را مشخص می کنیم. سپس حالت هایی را که ماتریس های دوار معکوس پذیر بوده بررسی نموده و خودریختی ها و خودریختی های کوچکترین حلقه شامل rϵ که در آن circn(rϵ) و circn(c) داخلی خطی روی است معرفی می کنیم. همچنین ضمن معرفی مفاه...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید