نتایج جستجو برای: کلمات کلیدی: معادلات دیفرانسیل تصادفی، روش¬های رانگ
تعداد نتایج: 186968 فیلتر نتایج به سال:
چکیده: در این پایان نامه به مطالعه و بررسی یک خانواده از روش های رانگ-کوتا تصادفی برای حل معادلات دیفرانسیل تصادفی از نوع استراتونویچ: dy(t) = g0(y(t)) dt+g1(y(t)) ? dw(t), y(t0)=y0, t ? [t0,t]. که در آن g_0 و g_1، به ترتیب ضریب رانش و انتشار و w(t) یک فرآیند وینر استاندارد –dبعدی است، پرداخته می شود. شرایط مرتبه قوی برای خانواده ای از روش های رانگ-کوتا تصادفی از مرتبه یک و یک ونیم برای دس...
در این پایان نامه یک رده جدید از روشهای رانگ - کوتای تصادفی برای تقریب ضعیف جواب دستگاههای معادلات دیفرانسیل ایتو با یک فرآیند وینر چند بعدی معرفی می شود. تعداد مراحل روشها به بعد فرآیند وینر وابسته نیست و تعداد متغیرهای تصادفی که باید شبیه سازی شوند بطور قابل ملاحظه ای کاهش می یابند.با کاربرد نظریه درختان ریشه دار رنگی شرایط مرتبه برای روشهای رانگ - کوتای تصادفی با همگرایی ضعیف مرتبه دوم محاسب...
معادله دیفرانسیل تصادفی از نوع استراتونویچ زیر را در نظر بگیرید: dy(t) = g0(y(t)) dt + g1(y(t)) ?d(w(t)), y(t0) = y0, t ? [t0,t], که در آن w(t) یک فرایند وینر است. در این پایان نامه یک روش رانگ- کوتای تصادفی صریح دو مرحله ای با ناحیه ی پایداری (به مفهوم مربع میانگین) بزرگ، دو روش رانگ- کوتای تصادفی نیمه ضمنی، یکی با ثابت های خطای اصلی مینیمم و دیگری با ناحیه ی پایداری (به مفهوم مربع میانگ...
در این رساله ابتدا مقدماتی از معادلات دیفرانسیل تصادفی و حسابان تصادفی را خواهیم دید و سپس در مورد نتایج اساسی استخراج شده بحث خواهیم کرد.اساسی ترین نتایج این رساله عبارتند از :تعمیم روشهای رانگ - کوتای صریح برای حل عددی معادلات دیفرانسیل تصادفی که در سال 1996 توسط k.burrage و p.m.burrage استخراج شده بودند در واقع در این رساله با استفاده از نظریه درختان ریشه دار و تعمیم آنها به حالت تصا...
در این پایان نامه از روش اویلر ترکیبی برای حل عددی این دسته از معادلات استفاده می شود و در پایان کارایی روش اویلر ترکیبی با توجه به خطای محاسبه شده برای این روش و ناحیه پایداری آن نسبت به روش اویلر ضمنی و نیمه ضمنی، همچنین همگرایی روش اویلر ترکیبی نشان خواهیم داد.
ابتدا در این پایاننامه تعاریف اولیه معادلات دیفرانسیل تصادفی را بیان می کنیم که این معادلات با معادلات دیفرانسیل جزئی با استفاده از قضیه نمایشی فیمن-کاس ارتباط دارند. در ادامه معادلات دیفرانسیل تصادفی پسرو و معادلات دیفرانسیل تصادفی پسرو-پیشرو را معرفی و سپس به رابطه بین معادلات دیفرانسیل تصادفی پسرو-پیشرو و معادلات دیفرانسیل جزئی سهموی شبه خطی اشاره می شود. نشان می دهیم جواب یک معادله دیفران...
در این پایان نامه روش های رانگ-کوتای افراز شده برای حل معادلات دیفرانسیل تصادفی مرتبه دوم معرفی میگردد اما چون دقت این روش ها پایین بود در ادامه روش های رانگ-کوتای افراز شده مرتبه بالاتر ارائه گردید.در انتها تابع چگالی ایستا برای معادلات دیفرانسیل تصادفی غیر خطی مرتبه دوم ارائه شد.
هدف اول در این پایان نامه این است که خواننده های مختلفی از جمله ریاضیدانان،فیزیکدانان، مهندسان و... را با ویژگی های جواب معادلات دیفرانسیل تاخیری و روشهای عددی برای حل این نوع از معادلات آشنا سازد. هدف دوم در این پایان نامه این است که بین روش های گسسته و پیوسته برای حل معادلات دیفرانسیل تاخیری ارتباط برقرار سازد و بوسیله الگوریتم ها و فنون توسعه یافته روش هایی را برای حل این نوع از معادلات ...
در این پایان به بررسی معادلات دیفرانسیل جبری و حل آن با روشهای عددی می پردازیم. این نوع دستگاهها شامل معادلات دیفرانسیل معمولی و محدودیت جبری می باشد. همچنین از روشهای عددی برای حل معادلات دیفرانسیل جبری همچون روش های رانگ گوتا، چند گامی، تکرار تغییراتی، هم محلی سینوسی و آدومین استفاده می کنیم. با معرفی کردن شاخص و در صورت لزوم کاهش شاخص به جواب تقریبی دستگاه می پردازیم. در پایان چند مثال ار...
در پایان نامه حاضر به مطالعه و بررسی خانواده کلی از روش های رانگ – کوتا تصادفی که نسبت به روش های موجود قبلی کارآمدتر است برای حل معادله دیفرانسیل تصادفی به صورت پرداخته می شود. شرایط مرتبه برای خانواده ای از روش های رانگ – کوتا تصادفی از مرتبه قوی یک با مینیمم ثابت خطا بیان شده و در ادامه خانواده ای از روش های رانگ – کوتا تصادفی از مرتبه قوی یک و نیم که اساس مولفه قطعی آن روش رانگ – کوتا کل...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید