نتایج جستجو برای: ARFIMA-FIGARCH framework

تعداد نتایج: 462494  

2016
Edmore Ranganai Sihle Basil Kubheka

South Africa is a cornucopia of the platinum group metals particularly platinum and palladium. These metals have many unique physical and chemical characteristics which render them indispensable to technology and industry, the markets and the medical field. In this paper we carry out a holistic investigation on long memory (LM), structural breaks and stylized facts in platinum and palladium ret...

2015
Sang Hoon Kang Seong-Min Yoon

In this paper, we study the dual long memory property of the Korean stock market. For this purpose, the ARFIMA–FIGARCH model is applied to two daily Korean stock price indices (KOSPI and KOSDAQ). Our empirical results indicate that long memory dynamics in the returns and volatility can be adequately estimated by the joint ARFIMA–FIGARCH model. We also found that the assumption of a skewed Stude...

2012
Maryam Tayefi T. V. Ramanathan

This paper reviews the theory and applications related to fractionally integrated generalized autoregressive conditional heteroscedastic (FIGARCH) models, mainly for describing the observed persistence in the volatility of a time series. The long memory nature of FIGARCHmodels allows to be a better candidate than other conditional heteroscedastic models for modeling volatility in exchange rates...

Journal: : 2022

Son yıllarda rüzgâr enerjisinin yenilenebilir bir enerji kaynağı olarak yaygınlaşması ile birlikte hızının üretimindeki ekonomik etkilerinin değerlendirilmesi de önem kazanmış ve planlamalarında doğru hızı tahmini modellemesine olan ilgi artmıştır. Çalışmada klasik yaklaşımlardan farklı hızlarındaki uzun hafıza özelliği incelenmiştir. Bu amaçla, Türkiye’ Bartın ili Amasra bölgesi hızları için e...

2007
Qianru Li Christophe Tricaud Rongtao Sun YangQuan Chen

In this paper, we have examined 4 models for Great Salt Lake level forecasting: ARMA (Auto-Regression and Moving Average), ARFIMA (Auto-Regressive Fractional Integral and Moving Average), GARCH (Generalized Auto-Regressive Conditional Heteroskedasticity) and FIGARCH (Fractional Integral Generalized Auto-Regressive Conditional Heteroskedasticity). Through our empirical data analysis where we div...

2009
MASSIMILIANO CAPORIN Massimiliano Caporin Juliusz Preś Luisa Bisaglia Dominique Guégan

The hedging of weather risks has become extremely relevant in recent years, promoting the diffusion of weather derivative contracts. The pricing of such contracts require the development of appropriate models for the prediction of the underlying weather variables. Within this framework, we present a modification of the double long memory ARFIMA-FIGARCH model introducing time-varying memory coef...

Journal: :Sustainability 2023

This study estimates the effects of dual long memory property and structural breaks on persistence level six major cryptocurrency markets. We apply Bai Perron break test, Inclán Tiao’s iterated cumulative sum squares (ICSS) algorithm, fractionally integrated generalized autoregressive conditional heteroscedasticity (FIGARCH) model, with different distributions. The results show that characteriz...

علیرضا دلیری محمد دنیایی, محمدجواد محقق نیا منصور کاشی

پژوهش حاضر وجود حافظه بلندمدت را در بورس اوراق بهادار تهران با کاربرد مدل‌های GPH، GSP، ARFIMA و FIGARCH بررسی می‌کند. داده‌های مورد‌بررسی، حاوی بازده روزانه هستند و آزمون‌های حافظه بلندمدت، برای بازده و نیز برای نوسان سری TEPIX انجام‌شده‌است. نتایج مدل‌های GPH، GSP و ARFIMA، وجود حافظه بلندمدت را در بازده سری نشان می‌دهند. همچنین نتایج اشاره بر‌این دارند که پویایی‌های حافظه بلندمدت در بازده و ...

Journal: :International Journal of Housing Markets and Analysis 2021

Purpose The purpose of this paper is to compare different models’ performance in modelling and forecasting the Finnish house price returns volatility. Design/methodology/approach competing models are autoregressive moving average (ARMA) model fractional integrated (ARFIMA) for returns. For volatility, exponential generalized conditional heteroscedasticity (EGARCH) with GARCH (FIGARCH) component...

Journal: :Muhasebe ve finansman dergisi 2021

Bu çalışmanın amacı, yapısal kırılmalar altında asimetrik bilginin hisse senedi getiri oynaklığı üzerindeki etkisini ARFIMA-FIGARCH ikili uzun hafıza ve Markov Switching Regresyon modelleriyle ortaya koymaktır. doğrultuda, çalışmada BİST 100 Endeksi’nin 04.01.2010-31.12.2018 dönemine ilişkin günlük dolar cinsinden kapanış fiyatları, alım satım fiyat marjı ile toplam işlem hacmi verileri dikkate...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید