نتایج جستجو برای: Complemented submodule, Closed range, Hilbert C*-module

تعداد نتایج: 1836548  

Journal: :journal of linear and topological algebra (jlta) 0
m mohammadzadeh karizaki department of mathematics, mashhad branch, islamic azad university, mashhad, iran. m hassani department of mathematics, mashhad branch, islamic azad university, mashhad, iran.

in this paper, we state some results on product of operators with closed rangesand we solve the operator equation txs*- sx*t*= a in the general setting of theadjointable operators between hilbert c*-modules, when ts = 1. furthermore, by usingsome block operator matrix techniques, we nd explicit solution of the operator equationtxs*- sx*t*= a.

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه شیراز - دانشکده علوم 1390

throughout this dissertation r is a commutative ring with identity and m is a unitary r-module. in this dissertation we investigate submodules of multiplication , prufer and dedekind modules. we also stat the equivalent conditions for which is ring , wher l is a submodule of afaithful multiplication prufer module. we introduce the concept of integrally closed modules and show that faithful mu...

2006
MICHAEL FRANK

B. Magajna and J. Schweizer showed in 1997 and 1999, respectively, that C*-algebras of compact operators can be characterized by the property that every norm-closed (and coinciding with its biorthogonal complement, resp.) submodule of every Hilbert C*-module over them is automatically an orthogonal summand. We find out further generic properties of the category of Hilbert C*-modules over C*-alg...

In this paper, we state some results on product of operators with closed ranges and we solve the operator equation $TXS^*-SX^*T^*= A$ in the general setting of the adjointable operators between Hilbert $C^*$-modules, when $TS = 1$. Furthermore, by using some block operator matrix techniques, we nd explicit solution of the operator equation $TXS^*-SX^*T^*= A$.

2008
RONALD G. DOUGLAS

The Hardy space on the unit ball in C provides examples of a quasi-free, finite rank Hilbert module which contains a pure submodule isometrically isomorphic to the module itself. For n = 1 the submodule has finite codimension. In this note we show that this phenomenon can only occur for modules over domains in C and for finitely-connected domains only for Hardy-like spaces, the bundle shifts. M...

In this paper, we define super Hilbert module and investigate frames in this space. Super Hilbert modules are  generalization of super Hilbert spaces in Hilbert C*-module setting. Also, we define frames in a super Hilbert module and characterize them by using of the concept of g-frames in a Hilbert C*-module. Finally, disjoint frames in Hilbert C*-modules are introduced and investigated.

2008
Xiang Fang

It’s well known that the functional Hilbert space H2 over the unit ball Bd ⊂ C , with kernel function K(z, ω) = 1 1−z1ω1−···−zdωd , admits a natural A(Bd)-module structure. We show the rank of a nonzero submodule M ⊂ H2 is infinity if and only if M is of infinite codimension. Together with Arveson’s dilation theory, our result shows that Hilbert modules stand in stark contrast with Hilbert basi...

Journal: :Proceedings of the American Mathematical Society 1997

Journal: :journal of algebra and related topics 2013
a. sahleh l. najarpisheh

let $a$ be a $c^*$-algebra and $e$ be a left hilbert $a$-module. in this paper we define a product on $e$ that making it into a banach algebra and show that under the certain conditions $e$  is arens regular. we also study the relationship between derivations of $a$ and $e$.

Controlled frames have been introduced to improve the numerical efficiency of iterative algorithms for inverting the frame operator on abstract Hilbert spaces. Fusion frames and g-frames generalize frames. Hilbert C*-modules form a wide category between Hilbert spaces and Banach spaces. Hilbert C*-modules are generalizations of Hilbert spaces by allowing the inner product to take values in a C*...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید