نتایج جستجو برای: Haar wavelet collocation method
تعداد نتایج: 1658878 فیلتر نتایج به سال:
in recent years, there has been greater attempt to find numerical solutions of differential equations using wavelet's methods. the following method is based on vector forms of haar-wavelet functions. in this paper, we will introduce one dimensional haar-wavelet functions and the haar-wavelet operational matrices of the fractional order integration. also the haar-wavelet operational matrice...
In recent years, there has been greater attempt to find numerical solutions of differential equations using wavelet's methods. The following method is based on vector forms of Haar-wavelet functions. In this paper, we will introduce one dimensional Haar-wavelet functions and the Haar-wavelet operational matrices of the fractional order integration. Also the Haar-wavelet operational matrices of ...
In this paper, an efficient numerical scheme based on uniform Haar wavelets is used to solve the non-planar Burgers equation. The quasilinearization technique is used to conveniently handle the nonlinear terms in the non-planar Burgers equation. The basic idea of Haar wavelet collocation method is to convert the partial differential equation into a system of algebraic equations that involves a ...
In this study, the thermal performance analysis of porous fin with temperature-dependent thermal conductivity and internal heat generation is carried out using Haar wavelet collocation method. The effects of various parameters on the thermal characteristics of the porous fin are investigated. It is found that as the porosity increases, the rate of heat transfer from the fin increases and the th...
The Haar wavelet collocation with iteration technique is applied for solving a class of time-fractional physical equations. The approximate solutions obtained by two dimensional Haar wavelet with iteration technique are compared with those obtained by analytical methods such as Adomian decomposition method (ADM) and variational iteration method (VIM). The results show that the present scheme is...
A wavelet is a basis function used to construct a wavelet transform. The first known wavelet – Haar wavelet was proposed in 1909 by Alfred Haar. Wavelet theory has been applied to various problems including signal processing in communications, image compression-extraction, solution of the linear and nonlinear integral equations etc. Haar wavelet based discretization technique is adopted for sol...
In this paper a robust and accurate algorithm based on Haar wavelet collocation method (HWCM) is proposed for solving eighth order boundary value problems. We used the Haar direct method for calculating multiple integrals of Haar functions. To illustrate the efficiency and accuracy of the concerned method, few examples are considered which arise in the mathematical modeling of fluid dynamics an...
In this paper, we have proposed a Haar wavelet quasilinearization method to solve the well known Blasius equation. The method is based on the uniform Haar wavelet operational matrix defined over the interval [0, 1]. In this method, we have proposed the transformation for converting the problem on a fixed computational domain. The Blasius equation arises in the various boundary layer problems of...
The collocation problem for noisy data with a piecewise constant noise variance is considered. An equivalence to the WIENERKOLMOGOROV equations in stationary collocation theory is constructed. A numerical solution based on HAAR wavelets is given.
in this work, we present a computational method for solving second kindnonlinear fredholm volterra integral equations which is based on the use ofhaar wavelets. these functions together with the collocation method are thenutilized to reduce the fredholm volterra integral equations to the solution ofalgebraic equations. finally, we also give some numerical examples that showsvalidity and applica...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید