نتایج جستجو برای: Hv-semigroup
تعداد نتایج: 10259 فیلتر نتایج به سال:
In this paper, we introduce a generalized class of an Hv-semigroup obtained from an LA-semigroup H. This generalized Hv-structure is called an Hv-LA-semigroup. We provide several examples of Hv-LA-semigroups. Moreover, with the help of an example we obtain that each LA-semigroup endowed with an equivalence relation can induce an Hv-LA-semigroup. We also investigate isomorphism theorems with the...
in this paper, we study fuzzy substructures in connection withhv-structures. the original idea comes from geometry, especially from thetwo dimensional euclidean vector space. using parameters, we obtain a largenumber of hyperstructures of the group-like or ring-like types. we connect,also, the mentioned hyperstructures with the theta-operations to obtain morestrict hyperstructures, as hv-groups...
در این پایان نامه مباحثی در مورد نیم گروه های معکوس توپولوژیکی اولیه (مطلقا) h-بسته و فشرده (شمارایی) بدست می آوریم و ساختار نیم گروه های معکوس توپولوژی فشرده شمارایی و نیم گروه های معکوس توپولوژی همنهشت-آزاد را توصیف می کنیم و نشان می دهیم که نیم گروه دو دوری نمی تواند در نیم گروه معکوس توپولوژی فشرده شمارایی نشانده شود. we present some discussions about compact (countably) and (absolutely) h...
Hyperstructure theory was born in 1934 when Marty [19] defined hypergroups as a generalization of groups. Let H be a non-empty set and let ℘∗(H) be the set of all non-empty subsets of H. A hyperoperation on H is a map ◦ : H ×H −→ ℘∗(H) and the couple (H, ◦) is called a hypergroupoid. If A and B are non-empty subsets of H, then we denote A◦B = ∪ a∈A, b∈B a◦b, x◦A = {x}◦A and A◦x = A◦{x}. Under c...
Let $S$ be a semitopological semigroup. The $wap-$ compactification of semigroup S, is a compact semitopological semigroup with certain universal properties relative to the original semigroup, and the $Lmc-$ compactification of semigroup $S$ is a universal semigroup compactification of $S$, which are denoted by $S^{wap}$ and $S^{Lmc}$ respectively. In this paper, an internal construction of ...
in the present paper we give a partially negative answer to a conjecture of ghahramani, runde and willis. we also discuss the derivation problem for both foundation semigroup algebras and clifford semigroup algebras. in particular, we prove that if s is a topological clifford semigroup for which es is finite, then h1(m(s),m(s))={0}.
in this paper we study the existence of commuting regular elements, verifying the notion left (right) commuting regular elements and its properties in the groupoid g(n) . also we show that g(n) contains commuting regular subsemigroup and give a necessary and sucient condition for the groupoid g(n) to be commuting regular.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید