نتایج جستجو برای: baer ring

تعداد نتایج: 123960  

A ring $R$ with an automorphism $sigma$ and a $sigma$-derivation $delta$ is called $delta$-quasi-Baer (resp., $sigma$-invariant quasi-Baer) if the right annihilator of every $delta$-ideal (resp., $sigma$-invariant ideal) of $R$ is generated by an idempotent, as a right ideal. In this paper, we study Baer and quasi-Baer properties of skew PBW extensions. More exactly, let $A=sigma(R)leftlangle x...

Journal: :journal of algebraic systems 2014
ali taherifar

an ideal i of a ring r is called right baer-ideal if there exists an idempotent e 2 r such that r(i) = er. we know that r is quasi-baer if every ideal of r is a right baer-ideal, r is n-generalized right quasi-baer if for each i e r the ideal in is right baer-ideal, and r is right principaly quasi-baer if every principal right ideal of r is a right baer-ideal. therefore the concept of baer idea...

An ideal I of a ring R is called right Baer-ideal if there exists an idempotent e 2 R such that r(I) = eR. We know that R is quasi-Baer if every ideal of R is a right Baer-ideal, R is n-generalized right quasi-Baer if for each I E R the ideal In is right Baer-ideal, and R is right principaly quasi-Baer if every principal right ideal of R is a right Baer-ideal. Therefore the concept of Baer idea...

Journal: :iranian journal of mathematical sciences and informatics 0
n. ashrafi department of mathematics, semnan university, semnan, iran n. pouyan

in this paper, we investigate various kinds of extensions of twin-good rings. moreover, we prove that every element of an abelian neat ring r is twin-good if and only if r has no factor ring isomorphic to z2  or z3. the main result of [24] states some conditions that any right self-injective ring r is twin-good. we extend this result to any regular baer ring r by proving that every element of a...

Journal: :Int. J. Math. Mathematical Sciences 2006
Tai Keun Kwak

In [15], Kaplansky introduced Baer rings as rings in which every right (left) annihilator ideal is generated by an idempotent. According to Clark [9], a ring R is called quasi-Baer if the right annihilator of every right ideal is generated (as a right ideal) by an idempotent. Further works on quasi-Baer rings appear in [4, 6, 17]. Recently, Birkenmeier et al. [8] called a ring R to be a right (...

Journal: :علوم 0

for a fixed positive integer , we say a ring with identity is n-generalized right principally quasi-baer, if for any principal right ideal of , the right annihilator of is generated by an idempotent. this class of rings includes the right principally quasi-baer rings and hence all prime rings. a certain n-generalized principally quasi-baer subring of the matrix ring are studied, and connections...

Journal: :journal of linear and topological algebra (jlta) 0
m sha ee-mousavi islamic azad university, south tehran branch

let r be a ring,  be an endomorphism of r and mr be a -rigid module. amodule mr is called quasi-baer if the right annihilator of a principal submodule of r isgenerated by an idempotent. it is shown that an r-module mr is a quasi-baer module if andonly if m[[x]] is a quasi-baer module over the skew power series ring r[[x; ]].

Let $R$ be a ring, $sigma$ be an endomorphism of $R$ and $M_R$ be a $sigma$-rigid module. A module $M_R$ is called quasi-Baer if the right annihilator of a principal submodule of $R$ is generated by an idempotent. It is shown that an $R$-module $M_R$ is a quasi-Baer module if and only if $M[[x]]$ is a quasi-Baer module over the skew power series ring $R[[x,sigma]]$.

In this paper we prove that each element of any regular Baer ring is a sum of two units if no factor ring of R is isomorphic to Z_2 and we characterize regular Baer rings with unit sum numbers $omega$ and $infty$. Then as an application, we discuss the unit sum number of some classes of group rings.

Journal: :bulletin of the iranian mathematical society 0
n. ashrafi semnan universityfaculty of mathematics, statistics and computer science, semnan university, semnan, iran. n. pouyan faculty of mathematics, statistics and computer science, semnan university, semnan, iran.

in this paper we prove that each element of any regular baer ring is a sum of two units if no factor ring of r is isomorphic to z_2 and we characterize regular baer rings with unit sum numbers $omega$ and $infty$. then as an application, we discuss the unit sum number of some classes of group rings.

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید