نتایج جستجو برای: doped graphene
تعداد نتایج: 96262 فیلتر نتایج به سال:
First-principle calculations have been investigated to study the adsorption of the molecules (SO2, CO, NH3, CO2, NO2, and NO) on the surface of mono boron (B) B-doped and dual B-doped graphene sheets to explore their potential applications as sensors. Our findings indicate that the adsorption of (CO and NH3) on B-doped graphene and (CO and ...
Boron and nitrogen doped graphenes are highly promising materials for electrochemical applications, such as energy storage, generation and sensing. The doped graphenes can be prepared by a broad variety of chemical approaches. The substitution of a carbon atom should induce n-type behavior in the case of nitrogen and p-type behavior in the case of boron-doped graphene; however, the real situati...
SnO2/nitrogen-doped graphene nanohybrids have been synthesized by an in situ hydrothermal method, during which the formation of SnO2 nanocrystals and nitrogen doping of graphene occur simultaneously. The as-prepared SnO2/nitrogen-doped graphene nanohybrids exhibit enhanced electrochemical performance for sodium-ion batteries compared to SnO2/graphene nanocomposites. A systematic comparison betw...
development of efficient electrocatalysts for oxygen reduction reaction (orr) is one of the most important issues for optimizing the performance of fuel cells and metal-air batteries. the introduction of nitrogen into carbon nanostructures has created new pathways for the development of non-precious electrocatalysts in fuel cells. in this work, nitrogen-doped graphene (ng) was synthesized by a ...
In this work, the effect of doping Graphene Quantum Dots (GQDs) on their emission spectra has been studied. First, graphene has been deposited on SiC substrate by using sublimation method. Second, doped-GQDs have been distributed on the surface of graphene via drop casting. The structure of the samples have been studied and characterized by X-ray diffraction (XRD), Scanning Electron Microscopy ...
A novel strategy to synthesize nitrogen (N) and sulfur (S)-doped graphene (G) is developed through sulfate-reducing bacteria treating graphene oxide (GO). The N, S-doped G demonstrates significantly improved electrocatalytic properties and electrochemical sensing performances in comparison with single-doped graphene due to the synergistic effects of dual dopants on the properties of graphene.
In this work, we show the doping of graphene most likely from heteroatoms induced by the substrate using Raman spectra, x-ray photoelectron spectroscopy, energy dispersive x-ray spectroscopy and ab initio molecular dynamics (MD) simulations. The doping of graphene on a highly boron-doped silicon substrate was achieved by an annealing at 400 K for about 3 h in an oven with air flow. With the sam...
There have been numerous efforts to improve the performance of graphene-based electronic devices by chemical doping. Most studies have focused on gas-phase doping with chemical vapor deposition. However, that requires a complicated transfer process that causes undesired doping and defects by residual polymers. Here, we report a solid-phase synthesis of doped graphene by means of silicon carbide...
Graphene thin films have great potential to function as transparent electrodes in organic electronic devices, due to their excellent conductivity and high transparency. Recently, organic light-emitting diodes (OLEDs)have been successfully demonstrated to possess high luminous efficiencies with p-doped graphene anodes. However, reliable methods to fabricate n-doped graphene cathodes have been la...
Using a modified chemical vapor deposition (CVD) method, we have prepared a class of new graphene foams (GFs) doped with nitrogen, boron or both. Nitrogen-doped graphene foams (N-GFs) with a nitrogen doping level of 3.1 atom% were prepared by CVD of CH4 in the presence of NH3 while boron-doped graphene foams (B-GFs) with a boron doping level of 2.1 atom% were produced by using toluene and triet...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید