نتایج جستجو برای: eulerbernoulli beam theory

تعداد نتایج: 883327  

In this paper, the free vibration analysis of sandwich micro beam with piezoelectric layers based on the modified couple stress and surface elasticity theories are investigated. The Hamilton’s principle is employed to derive the sandwich micro beam with piezoelectric based on modified couple stress theory incorporating with Gurtin- Murdoch surface theory. The generalized differential quadrature...

Analytical methods presented to analyze the buried steel pipelines at strike-slip fault crossing use the Euler-Bernoulli beam theory. The cross-section of a buried pipe that is completely surrounded by soil cannot rotate freely and would not be remained perpendicular to the bending line after deformation. So it would be better to take into consideration a rotation between the cross-section and ...

In the present paper, electrical energy harvesting from random vibrations of an Euler-Bernoulli nano-beam with two piezoelectric layers is investigated. The beam is composed of an aluminum layer together with two piezoelectric ceramic layers (PZT 5A) serving as energy harvesting sensors. In the proposed method, the equations governing the bimorph nano-beam will be analytically derived using cla...

2003
Carlos E.S. Cesnik Rafael Palacios

This work presents a comprehensive methodology for dimensional reduction of anisotropic slender structures with embedded anisotropic piezocomposite materials. The analysis is based on a variational-asymptotic formulation, and provides cross-sectional stiffness, inertia and actuation forces for a beam modeling of the structure. It can retain higher-order information corresponding to non-classica...

ژورنال: Journal of Railway Research 2014
Ariaei, A., Kouchaki, M., Ziaei-Rad, S.,

A simply supported Timoshenko beam with an intermediate backlash is considered. The beam equations of motion are obtained based on the Timoshenko beam theory by including the dynamic effect of a moving mass travelling along the vibrating path. The equations of motion are discretized by using the assumed modes technique and solved using the Runge–Kutta method. The analysis methods employed in...

The static pull-in instability of beam-type micro-electromechanical systems is theoretically investigated. Two engineering cases including cantilever and double cantilever micro-beam are considered. Considering the mid-plane stretching as the source of the nonlinearity in the beam behavior, a nonlinear size-dependent Euler-Bernoulli beam model is used based on a modified couple stress theory, c...

Journal: :Journal of the Royal Society, Interface 2013
Charlotte A Brassey Lee Margetts Andrew C Kitchener Philip J Withers Phillip L Manning William I Sellers

Classic beam theory is frequently used in biomechanics to model the stress behaviour of vertebrate long bones, particularly when creating intraspecific scaling models. Although methodologically straightforward, classic beam theory requires complex irregular bones to be approximated as slender beams, and the errors associated with simplifying complex organic structures to such an extent are unkn...

B Chabsang N Akbari,

Analysis of a laminated composite beam under impact by a rigid particle is investigated. The importance of this project is to simulate the impact of objects on small scale aerial structures. The stresses are considered uni- axial bending with no torsion loading. The first order shear deformation theory is used to simulate the beam. After obtaining kinematic and potential energy for a laminated ...

Journal: :Optics letters 1995
S Chi Q Guo

The scalar theory of the self-focusing of an optical beam is not valid for a very narrow beam, and a correct description of the beam behavior requires a vector analysis in this case. A vector nonparaxial theory is developed from the vector Maxwell equations by application of an order-of-magnitude analysis method. For the same input beam, the numerical results of self-focusing from both scalar a...

F Sohani H.R Eipakchi,

In the presented paper, the governing equations of a vibratory beam with moderately large deflection are derived using the first order shear deformation theory. The beam is homogenous, isotropic and it is subjected to the dynamic transverse and axial loads. The kinematic of the problem is according to the Von-Karman strain-displacement relations and the Hook's law is used as the constitutive eq...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید