نتایج جستجو برای: finite element solutions

تعداد نتایج: 711613  

2002
Gregory M. HULBERT Thomas J.R. HUGHES

Space-time finite element methods are presented to accurately solve elastodynamics problems that include sharp gradients due to propagating waves. The new methodology involves finite element discretization of the time domain as well as the usual finite element discretization of the spatial domain. Linear stabilizing mechanisms are included which do not degrade the accuracy of the space-time fin...

1998
YANZHAO CAO

A least-squares finite element method for second-order elliptic boundary value problems having interfaces due to discontinuous media properties is proposed and analyzed. Both Dirichlet and Neumann boundary data are treated. The boundary value problems are recast into a firstorder formulation to which a suitable least-squares principle is applied. Among the advantages of the method are that nonc...

In this paper we develop a numerical procedure using finite element and augmented Lagrangian meth-ods that simulates electro-mechanical pull-in states of both cantilever and fixed beams in microelectromechanical systems (MEMS) switches. We devise the augmented Lagrangian methods for the well-known Euler-Bernoulli beam equation which also takes into consideration of the fringing effect of electr...

2007
Jan Nordström Frank Ham Mohammad Shoeybi Edwin van der Weide Magnus Svärd Ken Mattsson Gianluca Iaccarino Jing Gong

We show how a stable and accurate hybrid procedure for fluid flow can be constructed. Two separate solvers, one using high order finite difference methods and another using the node-centered unstructured finite volume method are coupled in a truly stable way. The two flow solvers run independently and receive and send information from each other by using a third coupling code. Exact solutions t...

Journal: :Molecular & cellular biomechanics : MCB 2012
Ze-Wei Zhang Hui Wang Qing-Hua Qin

This paper presents a hybrid finite element model for describing quantitatively the thermal responses of skin tissue under laser irradiation. The model is based on the boundary integral-based finite element method and the Pennes bioheat transfer equation. In this study, temporal discretization of the bioheat system is first performed and leads to the well-known modified Helmholtz equation. A ra...

Journal: :Math. Comput. 2003
Zhiming Chen Thomas Y. Hou

The recently introduced multiscale finite element method for solving elliptic equations with oscillating coefficients is designed to capture the large-scale structure of the solutions without resolving all the fine-scale structures. Motivated by the numerical simulation of flow transport in highly heterogeneous porous media, we propose a mixed multiscale finite element method with an over-sampl...

2009
Prasad S. Sumant Narayana R. Aluru Andreas C. Cangellaris A. C. CANGELLARIS

In this paper, a methodology is proposed for expediting the coupled electro-mechanical finite element modeling of electrostatically actuated MEMS. The proposed methodology eliminates the need for repeated finite element meshing and subsequent electrostatic modeling of the device during mechanical deformation. We achieve this by using an approximation of the charge density on the movable electro...

A. Armin B. Behjat M. Abbasi M. Eslami,

In this paper‎, ‎the static bending‎, ‎free vibration‎, ‎and dynamic response of functionally graded‎ ‎piezoelectric beams have been carried out by finite element method‎‎under different sets of mechanical‎, ‎thermal‎, ‎and electrical‎ ‎loadings‎. ‎The beam with functionally graded piezoelectric material‎ ‎(FGPM) is assumed to be graded across the thickness with a simple‎ ‎power law distributio...

2007
Richard Liska Mikhail Shashkov

The maximum principle is a basic qualitative property of the solution of second-order elliptic boundary value problems. The preservation of the qualitative characteristics, such as the maximum principle, in discrete model is one of the key requirements. It is well known that standard linear finite element solution does not satisfy maximum principle on general triangular meshes in 2D. In this pa...

2007
Richard Liska Mikhail Shashkov

The maximum principle is basic qualitative property of the solution of elliptic boundary value problems. The preservation of the qualitative characteristics, such as maximum principle, in discrete model is one of the key requirements. It is well known that standard linear finite element solution does not satisfy maximum principle on general triangular meshes in 2D. In this paper we consider how...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید