نتایج جستجو برای: fitting subgroup
تعداد نتایج: 132332 فیلتر نتایج به سال:
we characterize those groups $g$ and vector spaces $v$ such that $v$ is a faithful irreducible $g$-module and such that each $v$ in $v$ is centralized by a $g$-conjugate of a fixed non-identity element of the fitting subgroup $f(g)$ of $g$. we also determine those $v$ and $g$ for which $v$ is a faithful quasi-primitive $g$-module and $f(g)$ has no regular orbit. we do use these to show in ...
let $g$ be a finite group. a subgroup $h$ of $g$ is called an $mathcal h $ -subgroup in $g$ if $n_g (h)cap h^gleq h$ for all $gin g$. a subgroup $h$ of $g$ is called a weakly $mathcal h^ast $-subgroup in $g$ if there exists a subgroup $k$ of $g$ such that $g=hk$ and $hcap k$ is an $mathcal h$-subgroup in $g$. we investigate the structure of the finite group $g$ under the assump...
abstract. in this paper we study some relations between the power andquotient power graph of a finite group. these interesting relations motivateus to find some graph theoretical properties of the quotient power graphand the proper quotient power graph of a finite group g. in addition, weclassify those groups whose quotient (proper quotient) power graphs areisomorphic to trees or paths.
in this paper, we give a complete proof of theorem 4.1(ii) and a new elementary proof of theorem 4.1(i) in [li and shen, on the intersection of the normalizers of the derived subgroups of all subgroups of a finite group, j. algebra, 323 (2010) 1349--1357]. in addition, we also give a generalization of baer's theorem.
The Fitting subgroup of a type-definable group in a simple theory is relatively definable and nilpotent. Moreover, the Fitting subgroup of a supersimple hyperdefinable group has a normal hyperdefinable nilpotent subgroup of bounded index, and is itself of bounded index in a hyperdefinable subgroup.
Let G be an arbitrary group. We show that if the Fitting subgroup of G is nilpotent then it is definable. We show also that the class of groups whose Fitting subgroup is nilpotent of class at most n is elementary. We give an example of a group (arbitrary saturated) whose Fitting subgroup is definable but not nilpotent. Similar results for the soluble radical are given.
let $g$ be a finite group. a subgroup $h$ of $g$ is called an $mathcal{h}$-subgroup in $g$ if $n_g(h)cap h^{g}leq h$ for all $gin g$. a subgroup $h$ of $g$ is called a weakly $mathcal{h}^{ast}$-subgroup in $g$ if there exists a subgroup $k$ of $g$ such that $g=hk$ and $hcap k$ is an $mathcal{h}$-subgroup in $g$. we investigate the structure of the finite group $g$ under the as...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید