نتایج جستجو برای: g row substochastic matrix
تعداد نتایج: 802495 فیلتر نتایج به سال:
A matrix R is said to be g-row substochastic if Re ≤ e. For X, Y ∈ Mn,m, it is said that X is sglt-majorized by Y , X ≺sglt Y , if there exists an n-by-n lower triangular g-row substochastic matrix R such that X = RY . This paper characterizes all (strong) linear preservers and strong linear preservers of ≺sglt on Rn and Mn,m, respectively.
abstract. let mn;m be the set of n-by-m matrices with entries inthe field of real numbers. a matrix r in mn = mn;n is a generalizedrow substochastic matrix (g-row substochastic, for short) if re e, where e = (1; 1; : : : ; 1)t. for x; y 2 mn;m, x is said to besgut-majorized by y (denoted by x sgut y ) if there exists ann-by-n upper triangular g-row substochastic matrix r such thatx = ry . th...
Abstract. Let Mn;m be the set of n-by-m matrices with entries inthe field of real numbers. A matrix R in Mn = Mn;n is a generalizedrow substochastic matrix (g-row substochastic, for short) if Re e, where e = (1; 1; : : : ; 1)t. For X; Y 2 Mn;m, X is said to besgut-majorized by Y (denoted by X sgut Y ) if there exists ann-by-n upper triangular g-row substochastic matrix R such thatX = RY . This ...
for $a,bin m_{nm},$ we say that $a$ is left matrix majorized (resp. left matrix submajorized) by $b$ and write $aprec_{ell}b$ (resp. $aprec_{ell s}b$), if $a=rb$ for some $ntimes n$ row stochastic (resp. row substochastic) matrix $r.$ moreover, we define the relation $sim_{ell s} $ on $m_{nm}$ as follows: $asim_{ell s} b$ if $aprec_{ell s} bprec_{ell s} a.$ this paper characterizes all linear p...
Suppose $textbf{M}_{n}$ is the vector space of all $n$-by-$n$ real matrices, and let $mathbb{R}^{n}$ be the set of all $n$-by-$1$ real vectors. A matrix $Rin textbf{M}_{n}$ is said to be $textit{row substochastic}$ if it has nonnegative entries and each row sum is at most $1$. For $x$, $y in mathbb{R}^{n}$, it is said that $x$ is $textit{sut-majorized}$ by $y$ (denoted by $ xprec_{sut} y$) if t...
For $A,Bin M_{nm},$ we say that $A$ is left matrix majorized (resp. left matrix submajorized) by $B$ and write $Aprec_{ell}B$ (resp. $Aprec_{ell s}B$), if $A=RB$ for some $ntimes n$ row stochastic (resp. row substochastic) matrix $R.$ Moreover, we define the relation $sim_{ell s} $ on $M_{nm}$ as follows: $Asim_{ell s} B$ if $Aprec_{ell s} Bprec_{ell s} A.$ This paper characterizes all linear p...
We study the nonsymmetric algebraic Riccati equation whose four coefficient matrices are the blocks of a nonsingular M -matrix or an irreducible singular M -matrix M . The solution of practical interest is the minimal nonnegative solution. We show that Newton’s method with zero initial guess can be used to find this solution without any further assumptions. We also present a qualitative perturb...
Let A and B be n × m matrices. The matrix B is said to be g-row majorized (respectively g-column majorized) by A, if every row (respectively column) of B, is g-majorized by the corresponding row (respectively column) of A. In this paper all kinds of g-majorization are studied on Mn,m, and the possible structure of their linear preservers will be found. Also all linear operators T : Mn,m ---> Mn...
To describe the dynamics of stage-structured populations with m stages living in n patches, we consider matrix models of the form SD, where S is a block diagonal matrix with n× n column substochastic matrices S1, . . . , Sm along the diagonal and D is a block matrix whose blocks aren× n nonnegative diagonal matrices. The matrix S describes movement between patches and the matrix D describes gro...
let a and b be n × m matrices. the matrix b is said to be g-row majorized (respectively g-column majorized) by a, if every row (respectively column) of b, is g-majorized by the corresponding row (respectively column) of a. in this paper all kinds of g-majorization are studied on mn,m, and the possible structure of their linear preservers will be found. also all linear operators t : mn,m ---> mn...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید