نتایج جستجو برای: graph's connectivity
تعداد نتایج: 158407 فیلتر نتایج به سال:
Fuzzy incidence graphs can be used as models for nondeterministic interconnection networks having extra node-edgerelationships. For example, ramps in a highway system may be modeled as a fuzzy incidence graph so that unexpectedflow between cities and highways can be effectively studied and controlled. Like node and edge connectivity in graphs,node connectivity and arc connectivity in fuzzy inci...
the tenacity of a graph g, t(g), is dened by t(g) = min{[|s|+τ(g-s)]/[ω(g-s)]}, where the minimum is taken over all vertex cutsets s of g. we dene τ(g - s) to be the number of the vertices in the largest component of the graph g - s, and ω(g - s) be the number of components of g - s.in this paper a lower bound for the tenacity t(g) of a graph with genus γ(g) is obtained using the graph's...
In this paper, we obtain the upper and lower bounds on the eccen- tricity connectivity index of unicyclic graphs with perfect matchings. Also we give some lower bounds on the eccentric connectivity index of unicyclic graphs with given matching numbers.
We prove that the unique decomposition of connected graphs defined by Tutte is definable by formulas of Monadic Second-Order Logic. This decomposition has two levels: every connected graph is a tree of "2-connected components" called blocks ; every 2-connected graph is a tree of so-called 3-blocks. Our proof uses 2dags which are certain acyclic orientations of the considered graphs. We obtain a...
let $gamma_{n,kappa}$ be the class of all graphs with $ngeq3$ vertices and $kappageq2$ vertex connectivity. denote by $upsilon_{n,beta}$ the family of all connected graphs with $ngeq4$ vertices and matching number $beta$ where $2leqbetaleqlfloorfrac{n}{2}rfloor$. in the classes of graphs $gamma_{n,kappa}$ and $upsilon_{n,beta}$, the elements having maximum augmented zagreb index are determined.
let $g=(v,e)$ be a connected graph. the eccentric connectivity index of $g$, $xi^{c}(g)$, is defined as $xi^{c}(g)=sum_{vin v(g)}deg(v)ec(v)$, where $deg(v)$ is the degree of a vertex $v$ and $ec(v)$ is its eccentricity. the eccentric distance sum of $g$ is defined as $xi^{d}(g)=sum_{vin v(g)}ec(v)d(v)$, where $d(v)=sum_{uin v(g)}d_{g}(u,v)$ and $d_{g}(u,v)$ is the distance between $u$ and $v$ ...
Eccentric connectivity index has been found to have a low degeneracy and hence a significant potential of predicting biological activity of certain classes of chemical compounds. We present here explicit formulas for eccentric connectivity index of various families of graphs. We also show that the eccentric connectivity index grows at most polynomially with the number of vertices and determine ...
Let $Gamma_{n,kappa}$ be the class of all graphs with $ngeq3$ vertices and $kappageq2$ vertex connectivity. Denote by $Upsilon_{n,beta}$ the family of all connected graphs with $ngeq4$ vertices and matching number $beta$ where $2leqbetaleqlfloorfrac{n}{2}rfloor$. In the classes of graphs $Gamma_{n,kappa}$ and $Upsilon_{n,beta}$, the elements having maximum augmented Zagreb index are determined.
the eccentricity connectivity index of a molecular graph g is defined as (g) = av(g)deg(a)ε(a), where ε(a) is defined as the length of a maximal path connecting a to othervertices of g and deg(a) is degree of vertex a. here, we compute this topological index forsome infinite classes of dendrimer graphs.
The tenacity of an incomplete connected graph G is defined as T (G) = min{ |S|+m(G−S) ω(G−S) : S ⊂ V (G), ω(G− S) > 1}, where ω(G− S) and m(G− S), respectively, denote the number of components and the order of a largest component inG−S. This is a reasonable parameter to measure the vulnerability of networks, as it takes into account both the amount of work done to damage the network and how bad...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید