نتایج جستجو برای: h cofinitely supplemented module
تعداد نتایج: 626383 فیلتر نتایج به سال:
a module $m$ is called $emph{h}$-cofinitely supplemented if for every cofinite submodule $e$ (i.e. $m/e$ is finitely generated) of $m$ there exists a direct summand $d$ of $m$ such that $m = e + x$ holds if and only if $m = d + x$, for every submodule $x$ of $m$. in this paper we study factors, direct summands and direct sums of $emph{h}$-cofinitely supplemented modules. let $m$ be an $emph{h}$...
A module $M$ is called $emph{H}$-cofinitely supplemented if for every cofinite submodule $E$ (i.e. $M/E$ is finitely generated) of $M$ there exists a direct summand $D$ of $M$ such that $M = E + X$ holds if and only if $M = D + X$, for every submodule $X$ of $M$. In this paper we study factors, direct summands and direct sums of $emph{H}$-cofinitely supplemented modules. Let $M$ be an $emph{H}...
We say that a module $M$ is a emph{cms-module} if, for every cofinite submodule $N$ of $M$, there exist submodules $K$ and $K^{'}$ of $M$ such that $K$ is a supplement of $N$, and $K$, $K^{'}$ are mutual supplements in $M$. In this article, the various properties of cms-modules are given as a generalization of $oplus$-cofinitely supplemented modules. In particular, we prove tha...
we say that a module $m$ is a emph{cms-module} if, for every cofinite submodule $n$ of $m$, there exist submodules $k$ and $k^{'}$ of $m$ such that $k$ is a supplement of $n$, and $k$, $k^{'}$ are mutual supplements in $m$. in this article, the various properties of cms-modules are given as a generalization of $oplus$-cofinitely supplemented modules. in particular, we prove tha...
It is proven that a ring R is δ-semiperfect if and only if every right R-module is (amply) cofinitely δ-supplemented. Mathematics Subject Classification: 16L30, 16E50
One of the generalizations supplemented modules is Goldie*-supplemented module, defined by Birkenmeier et al. using $\beta^{\ast}$ relation. In this work, we deal with concept cofinitely as a version module. A left $R$-module $M$ called module if there supplement submodule $S$ $C\beta^{\ast}S$, for each cofinite $C$ $M$. Evidently, are Goldie*-supplemented. Further, Goldie*-supplemented, then $...
Let M be a right R-module. We call M Rad-H-supplemented iffor each Y M there exists a direct summand D of M such that(Y + D)/D (Rad(M) + D)/D and (Y + D)/Y (Rad(M) + Y )/Y .It is shown that:(1) Let M = M1M2, where M1 is a fully invariant submodule of M.If M is Rad-H-supplemented, thenM1 andM2 are Rad-H-supplemented.(2) Let M = M1 M2 be a duo module and Rad--supplemented. IfM1 is radical M2-...
In this paper, we introduce the concept of (amply) cofinitely ss-supplemented modules as a proper generalization modules, and provide various properties these modules. particular, prove that arbitrary sum is ss-supplemented. Moreover, show ring R semiperfect Rad(R)⊆Soc(RR) if only every left R-module
In this work, we introduce $H^*$-condition on the set of submodules of a module. Let $M$ be a module. We say $M$ satisfies $H^*$ provided that for every submodule $N$ of $M$, there is a direct summand$D$ of $M$ such that $(N+D)/N$ and $(N+D)/D$ are cosingular. We show that over a right perfect right $GV$-ring,a homomorphic image of a $H^*$ duo module satisfies $H^*$.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید