نتایج جستجو برای: hg (ii)
تعداد نتایج: 607466 فیلتر نتایج به سال:
mercury is one of the most toxic heavy metals present in aquatic systems, exhibiting a complex behaviour in the environment, where it may persist for decades after the source of pollution is stopped. hence, it is important develop new techniques for its removal from the aquatic systems. in this context, a particularly promising line of research is the use of new materials capable of up taking m...
Dibutyl-Disulfide Montmorillonite (DD-MMT) was synthesized successfully and found to bean excellent adsorbent for Hg(II) removal. The fourier transform infrared spectroscopy (FTIR),x-ray diffraction spectrum (XRD) and scanning electron microscopy (SEM) were used tocharacterize properties of the absorbent. The effects of several parameters such as solutionpH, adsorbent dose, contact time and the...
رشد و توسعه سنسورهای نوری شیمیایی (اپتود) نسبت به انواع دیگر سنسورها در سال های اخیر بسیار سریع و چشمگیر بوده است. استفاده از اپتودها به علت مزیت هایی نظیر حساسیت خوب، گزینش پذیری بالا، سهولت اجرا و کم هزینه بودن در شیمی تجزیه مورد توجه قرار گرفته است. طراحی اپتود مورد استفاده در این پروژه ، تثبیت شناساگر دی تیزون روی غشای تری استیل سلولز، برای اندازه گیری جداگانه ی cu(ii) و hg(ii) قبلا گزارش ...
hydroxyapatite nanocrystals were synthesized by sol-gel combustion method for the sorption ofhg(ii) ions from aqueous solutions. the effects of varying parameters such as ph, temperature, initialmetal concentration, and contact time on the adsorption process were examined. adsorptionequilibrium was established in 360 minutes and the maximum adsorption of hg(ii) on thehydroxyapatite was observed...
Background and purpose: The discharge of toxic heavy metal ions into the environment is a serious pollution problem. Heavy metal ions pose adverse toxic risks to human health at very low concentrations. The aim of this paper is the adsorption potential of chitosan (CS) in the removal of Hg(II) and Cd(II) ions from aqueous solution. Materials and Methods: This study was conducted in laboratory s...
In this work application of seven synthetic polymers as adsorbents for the removal of Hg(II) from aqueous solution was studied. The equilibrium studies are systematically carried out in a batch process, covering various process parameters that include agitation time, adsorbent dosage, and pH of the aqueous solution. Variations of Hg(II) concentration in solution have been studied through measur...
For the first time, the present study removes ions of mercury, in the form of Hg (I) and Hg (II) ions, from aqueous solutions by adsorbing them onto titanium dioxide nanoparticles. The effects of various parameters, such as solution's initial pH, temperature, sorbent dosage, initial mercury concentration, and contact time have been examined on the adsorption process. The experimental results ha...
For the first time, the present study removes ions of mercury, in the form of Hg (I) and Hg (II) ions, from aqueous solutions by adsorbing them onto titanium dioxide nanoparticles. The effects of various parameters, such as solution's initial pH, temperature, sorbent dosage, initial mercury concentration, and contact time have been examined on the adsorption process. The experimental results ha...
in this work application of seven synthetic polymers as adsorbents for the removal of hg(ii) from aqueous solution was studied. the equilibrium studies are systematically carried out in a batch process, covering various process parameters that include agitation time, adsorbent dosage, and ph of the aqueous solution. variations of hg(ii) concentration in solution have been studied through measur...
A novel, simple, sensitive and effective method has been developed for preconcentration of Hg(II) on nano-Fe3O4-DOP-ED solid-phase extraction adsorbent. In this paper, Dioctyl phthalate (DOP) was used to encapsulate nano-Fe3O4 and produce a nano-Fe3O4-DOP sorbent based new sorbent was prepared. This was treated with ethylenediamine (ED) in another solvent-free procedure for the formation of a n...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید