نتایج جستجو برای: lifting modules
تعداد نتایج: 70058 فیلتر نتایج به سال:
Lifting modules and their various generalizations as some main concepts in module theory have been studied and investigated extensively in recent decades. Some authors tried to present some homological aspects of lifting modules and -supplemented modules. In this work, we shall present a homological approach to -supplemented modules via fully invariant submodules. Lifting modules and H-suppleme...
we introduce the notions of t-dual rickart and strongly t-dual rickart modules. we provide several characterizations and investigate properties of each of these concepts. it is shown that every free (resp. finitely generated free) $r$-module is t-dual rickart if and only if $overline{z}^2(r)$ is a direct summand of $r$ and end$(overline{z}^2(r))$ is a semisimple (resp. regular) ring. it is sho...
A module $M$ is lifting if and only if $M$ is amply supplemented and every coclosed submodule of $M$ is a direct summand. In this paper, we are interested in a generalization of lifting modules by removing the condition"amply supplemented" and just focus on modules such that every non-cosingular submodule of them is a summand. We call these modules NS. We investigate some gen...
let $m$ be a right module over a ring $r$, $tau_m$ a preradical on $sigma[m]$, and$ninsigma[m]$. in this note we show that if $n_1, n_2in sigma[m]$ are two$tau_m$-lifting modules such that $n_i$ is $n_j$-projective ($i,j=1,2$), then $n=n_1oplusn_2$ is $tau_m$-lifting. we investigate when homomorphic image of a $tau_m$-lifting moduleis $tau_m$-lifting.
Let $M$ be a right module over a ring $R$, $tau_M$ a preradical on $sigma[M]$, and$Ninsigma[M]$. In this note we show that if $N_1, N_2in sigma[M]$ are two$tau_M$-lifting modules such that $N_i$ is $N_j$-projective ($i,j=1,2$), then $N=N_1oplusN_2$ is $tau_M$-lifting. We investigate when homomorphic image of a $tau_M$-lifting moduleis $tau_M$-lifting.
We consider a generalization of lifting modules relative to a class A of modules and a proper class E of short exact sequences of modules. These modules will be called E-A-lifting. We establish characterizations of modules with the property that every direct sum of copies of them is E-A-lifting. 2000 Mathematics Subject Classification: 16S90, 16D80.
In this paper we introduce the notions of G∗L-module and G∗L-module whichare two proper generalizations of δ-lifting modules. We give some characteriza tions and properties of these modules. We show that a G∗L-module decomposesinto a semisimple submodule M1 and a submodule M2 of M such that every non-zero submodule of M2 contains a non-zero δ-cosingular submodule.
in this paper we introduce the notions of g∗l-module and g∗l-module whichare two proper generalizations of δ-lifting modules. we give some characteriza tions and properties of these modules. we show that a g∗l-module decomposesinto a semisimple submodule m1 and a submodule m2 of m such that every non-zero submodule of m2 contains a non-zero δ-cosingular submodule.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید