نتایج جستجو برای: lucas
تعداد نتایج: 4686 فیلتر نتایج به سال:
In this paper, we give some determinantal and permanental representations of generalized Lucas polynomials, which are a general form of generalized bivariate Lucas p-polynomials, ordinary Lucas and Perrin sequences etc., by using various Hessenberg matrices. In addition, we show that determinant and permanent of these Hessenberg matrices can be obtained by using combinations. Then we show, the ...
in this paper, we give some determinantal and permanental representations of generalized lucas polynomials, which are a general form of generalized bivariate lucas p-polynomials, ordinary lucas and perrin sequences etc., by using various hessenberg matrices. in addition, we show that determinant and permanent of these hessenberg matrices can be obtained by using combinations. then we show, the ...
A Fibonacci string of length $n$ is a binary string $b = b_1b_2ldots b_n$ in which for every $1 leq i < n$, $b_icdot b_{i+1} = 0$. In other words, a Fibonacci string is a binary string without 11 as a substring. Similarly, a Lucas string is a Fibonacci string $b_1b_2ldots b_n$ that $b_1cdot b_n = 0$. For a natural number $ngeq1$, a Fibonacci cube of dimension $n$ is denoted by $Gamma_n$ and i...
The main goal of this paper is to develop a new generalization of balancing and Lucas-balancing sequences namely balancing and Lucas-balancing $p$-numbers and derive several identities related to them. Some combinatorial forms of these numbers are also presented.
TITLE PAGE 1 2 ARTICLE TITLE: Worsening of central sleep apnea at high altitude – a role for 3 cerebrovascular function 4 5 AUTHORS: 6 Keith R. Burgess 7 Samuel J. E. Lucas 8 Kelly Shepherd 9 Andrew Dawson 10 Marianne Swart 11 Kate N. Thomas 12 Rebekah A. I. Lucas 13 Joseph Donnelly 14 Karen C. Peebles 15 Rishi Basnyat 16 Philip N. Ainslie 17 CONTRIBUTIONS TO THE STUDY: 18 Conception and design...
In this paper, we give some determinantal and permanental representations of generalized bivariate Lucas p-polynomials by using various Hessenberg matrices. The results that we obtained are important since generalized bivariate Lucas p-polynomials are general forms of, for example, bivariate Jacobsthal-Lucas, bivariate Pell-Lucas ppolynomials, Chebyshev polynomials of the first kind, Jacobsthal...
In this paper, we show that there are infinitely many Sierpiński numbers in the sequence of Lucas numbers. We also show that there are infinitely many Riesel numbers in the sequence of Lucas numbers. Finally, we show that there are infinitely many Lucas numbers that are not a sum of two prime powers.
As in [1, 2], for rapid numerical calculations of identities pertaining to Lucas or both Fibonacci and Lucas numbers we present each identity as a binomial sum. 1. Preliminaries The two most well-known linear homogeneous recurrence relations of order two with constant coefficients are those that define Fibonacci and Lucas numbers (or Fibonacci and Lucas sequences). They are defined recursively ...
The Lucas function is a recently proposed one-way function used in public key cryptography. The security of cryptosystems based on the Lucas function relies on the difficulty of solving the Lucas logarithm problem. In this paper, the Lucas logarithm problem is studied using interpolation techniques. In particular, the inverse Aitken and the inverse Neville interpolation methods are applied to v...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید