نتایج جستجو برای: parametric bayesian

تعداد نتایج: 141169  

Stephen G. Walker,

This paper reviews Bayesian Nonparametric methods and discusses how parametric predictive densities can be constructed using nonparametric ideas.

Journal: :iranian journal of cancer prevention 0
alireza abadi dept. of community medicine and health, shahid beheshti university of medical sciences, tehran, iran farzaneh ahmadi dept. of biostatistics, school of paramedical, shahid beheshti university of medical sciences, tehran, iran hamaid alavi majd dept. of biostatistics, school of paramedical, shahid beheshti university of medical sciences, tehran, iran mohammad esmaeil akbari cancer research center, shahid beheshti university of medical sciences, tehran, iran zainab abolfazli khonbi dept. of english language, kashan university of medical sciences, kashan, iran esmat davoudi monfared dept. of community medicine and health, shahid beheshti university of medical sciences, tehran, iran

background: colon cancer is the third cause of cancer deaths. although colon cancer survival time has increased in recent years, the mortality rate is still high. the cox model is the most common regression model often used in medical research in survival analysis, but most of the time the effect of at least one of the independent factors changes over time, so the model cannot be used. in the c...

Journal: :iranian journal of science and technology (sciences) 2005
j. behboodian

the problem of hypothesis testing with a nuisance parameter is considered. two methods forusing fuzzy knowledge on the nuisance parameter to test hypotheses are suggested. these methods areneither a pure classical nor a pure bayesian approach to hypothesis testing, but rather related to both. afew known examples and their applications, which cannot be studied by the parametric statisticalmethod...

2014
P. Chen Peng Chen

We analyze reduced basis acceleration of recently proposed deterministic Bayesian inversion algorithms for partial differential equations with uncertain distributed parameter, for observation data subject to additive, Gaussian observation noise. Specifically, Bayesian inversion of affine-parametric, linear operator families on possibly high-dimensional parameter spaces. We consider “high-fideli...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه پیام نور - دانشگاه پیام نور استان تهران - دانشکده علوم پایه 1392

داده های فضایی در بررسی های علوم محیطی مانند هواشناسی، محیط زیست، زمین شناسی و اقیانوس شناسی در طول زمان نیز به یکدیگر وابسته ان. تحلیل این گونه داده ها مستلزم تعیین ساختار همبستگی فضایی-زمانی آن ها از طریق کواریانس است. در دو دهه اخیر بررسی های زیادی برای مدل بندی و تحلیل چنین داده هایی صورت گرفته است. در این پایان نامه روش رگرسیون چندک بیز برای تحلیل داده های فضایی-زمانی ارائه شده است .

2009
A. YUAN

Bayesian and frequentist methods differ in many aspects, but share some basic optimality properties. In practice, there are situations in which one of the methods is more preferred by some criteria. We consider the case of inference about a set of multiple parameters, which can be divided into two disjoint subsets. On one set, a frequentist method may be favored and on the other, the Bayesian. ...

1999
Yongdai Kim

In Bayesian paradigm of survival analysis, we can combine a nonparametric estimator and a parametric model by putting a prior distribution nonparametrically around the entire parametric family. This method can avoids the ineeciency of the nonparametric estimator due to ignoring partial information about a parametric model and at the same time avoids the pitfalls connected with an incorrectly sp...

2009
BRANKO MILADINOVIC CHRIS P. TSOKOS C. P. Tsokos

The classical Gumbel probability distribution is modified in order to study the failure times of a given system. Bayesian estimates of the reliability function under five different parametric priors and the square error loss are studied. The Bayesian reliability estimate under the non-parametric kernel density prior is compared with those under the parametric priors and numerical computations a...

Journal: :IEEE Transactions on Signal Processing 2022

We consider the classical problem of missing-mass estimation, which deals with estimating total probability unseen elements in a sample. The estimation has various applications machine learning, statistics, language processing, ecology, sensor networks, and others. naive, constrained maximum likelihood (CML) estimator is inappropriate for this since it tends to overestimate observed elements. S...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید