نتایج جستجو برای: power-mean and improwed power-mean integral inequalities

تعداد نتایج: 16954351  

In this manuscript, a new class of extended (m1,m2)-convex and concave functions is introduced. After some properties of (m1,m2)-convex functions have been given, the inequalities obtained with Hölder and Hölder-İşcan and power-mean and improwed power-mean integral inequalities have been compared and it has been shown that the inequality with Hölder-İşcan inequality gives a better approach than...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه لرستان - دانشکده علوم پایه 1392

‎in this article‎, ‎we have focused one some basic and productive information about the properties of spectrum and singular values related to compact operators which are ideals in a c*-algebra of bounded operators‎. ‎considering a two-sided connection between the family of symmetric gauge functions on sequence of singular values of compact operators and symmetric norms on finite dimensional ope...

Journal: :Mathematical Inequalities & Applications 2004

Journal: :bulletin of the iranian mathematical society 2012
yuming chu mingyu shi yueping jiang

for all $a,b>0$, the following two optimal inequalities are presented: $h^{alpha}(a,b)l^{1-alpha}(a,b)geq m_{frac{1-4alpha}{3}}(a,b)$ for $alphain[frac{1}{4},1)$, and $ h^{alpha}(a,b)l^{1-alpha}(a,b)leq m_{frac{1-4alpha}{3}}(a,b)$ for $alphain(0,frac{3sqrt{5}-5}{40}]$. here, $h(a,b)$, $l(a,b)$, and $m_p(a,b)$ denote the harmonic, logarithmic, and power means of order $p$ of two positive numbers...

پایان نامه :دانشگاه آزاد اسلامی - دانشگاه آزاد اسلامی واحد تهران مرکزی - دانشکده ادبیات و زبانهای خارجی 1390

august wilson is undoubtedly one of the rare black playwrights whose works have attracted streams of attention and worldwide audience. the present study aims at analyzing fences and piano lesson which are two of the most successful plays in his pittsburgh cycle from the perspective of michel foucault’s theories and ideas. studying these two plays from foucault’s perspective opens new windows in...

For all $a,b>0$, the following two optimal inequalities are presented: $H^{alpha}(a,b)L^{1-alpha}(a,b)geq M_{frac{1-4alpha}{3}}(a,b)$ for $alphain[frac{1}{4},1)$, and $ H^{alpha}(a,b)L^{1-alpha}(a,b)leq M_{frac{1-4alpha}{3}}(a,b)$ for $alphain(0,frac{3sqrt{5}-5}{40}]$. Here, $H(a,b)$, $L(a,b)$, and $M_p(a,b)$ denote the harmonic, logarithmic, and power means of order $p$ of two positive numbers...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید