نتایج جستجو برای: projective line over finite field
تعداد نتایج: 2364813 فیلتر نتایج به سال:
graham higman has defined coset diagrams for psl(2,ℤ). these diagrams are composed of fragments, and the fragments are further composed of two or more circuits. q. mushtaq has proved in 1983 that existence of a certain fragment γ of a coset diagram in a coset diagram is a polynomial f in ℤ[z]. higman has conjectured that, the polynomials related to the fragments are monic and for a fixed degree...
Graham Higman has defined coset diagrams for PSL(2,ℤ). These diagrams are composed of fragments, and the fragments are further composed of two or more circuits. Q. Mushtaq has proved in 1983 that existence of a certain fragment γ of a coset diagram in a coset diagram is a polynomial f in ℤ[z]. Higman has conjectured that, the polynomials related to the fragments are monic and for a fixed degree...
Let $R$ be a commutative Noetherian ring. We prove that over a local ring $R$ every finitely generated $R$-module $M$ of finite Gorenstein projective dimension has a Gorenstein projective cover$varphi:C rightarrow M$ such that $C$ is finitely generated and the projective dimension of $Kervarphi$ is finite and $varphi$ is surjective.
Recently, rational functions of degree three that permute the projective line P1(Fq) over a finite field Fq were determined by Ferraguti and Micheli. In present paper, using different method,...
Let k be a perfect field and let K/k be a finite extension of fields. An arithmetic noncommutative projective line is a noncommutative space of the form ProjSK(V ), where V be a k-central two-sided vector space over K of rank two and SK(V ) is the noncommutative symmetric algebra generated by V over K defined by M. Van den Bergh [26]. We study the geometry of these spaces. More precisely, we pr...
In this paper, we extend the definition of the Nathanson height from points in projective spaces over Fp to points in projective spaces over arbitrary finite fields. If [a0 : . . . : an] ∈ P(Fp), then the Nathanson height is hp([a0 : a1 : . . . : ad]) = min b∈Fp d ∑ i=0 H(bai) where H(ai) = |N(ai)|+p(deg(ai)−1) with N the field norm and |N(ai)| the element of {0, 1, . . . , p− 1} congruent to N...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید