نتایج جستجو برای: pure exact
تعداد نتایج: 213154 فیلتر نتایج به سال:
in this paper, we introduce the notion of $(m,n)$-algebraically compact modules as an analogue of algebraically compact modules and then we show that $(m,n)$-algebraically compactness and $(m,n)$-pure injectivity for modules coincide. moreover, further characterizations of a $(m,n)$-pure injective module over a commutative ring are given.
In this paper, we introduce the notion of $(m,n)$-algebraically compact modules as an analogue of algebraically compact modules and then we show that $(m,n)$-algebraically compactness and $(m,n)$-pure injectivity for modules coincide. Moreover, further characterizations of a $(m,n)$-pure injective module over a commutative ring are given.
We investigate the structure of pure-syzygy modules in a pure-projective resolution of any right R-module over an associative ring R with an identity element. We show that a right R-module M is pure-projective if and only if there exists an integer n ≥ 0 and a pure-exact sequence 0 → M → Pn → · · · → P0 → M → 0 with pure-projective modules Pn, . . . , P0. As a consequence we get the following v...
A proper short exact sequence 0! A!f B! C ! 0 ð*Þ in the category of locally compact abelian groups is said to be t-pure if fðAÞ is a topologically pure subgroup of B, that is, if
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید